Nav: Home

Preventing drugs from being transported

June 17, 2019

An international research team has investigated the transport mechanism of a bacterial membrane protein using an artificially produced antibody fragment. The transport proteins, called ABC exporters, are present, for instance, in the cell membranes of bacteria and in large quantities in cancer cells and are responsible for transporting small molecules out of the cells. Some transporters can pump antibiotics or chemotherapy agents out of the cells, thus rendering therapies ineffective. In the current study, researchers worked with isolated ABC exporters and showed how substrate transport is related to the energy drive of the protein and how both can be modified by an antibody fragment or by mutations. The results were published in the journal Nature Communications on 21st May 2019.

For the study, Professor Enrica Bordignon and Professor Lars Schäfer from Ruhr-Universität Bochum, both members of the Cluster of Excellence Resolv, cooperated with Professor Markus Seeger from the University of Zurich and Professor Mikko Karttunen from the University of Western Ontario.

Multi-stage transport process

ABC exporters consume energy when transporting molecules out of the cells. They obtain this from the splitting of the energy storage molecule ATP on the inside of the membrane. Broadly speaking, the ABC exporter is comprised of three areas: the energy-providing motor inside the cell, a connector that extends through the cell membrane, and a gate on the outside of the membrane.

For the transport process, the ABC exporter opens inside the cell, takes in a molecule from the cytoplasm, and transports it to the other side of the membrane. There, the outer gate opens and the molecule is excreted - but only if the protein motor splits ATP inside. Only once the outer gate is closed again can the next transport process begin.

Motor switched off

The researchers developed an artificial antibody fragment, also known as a sybody, that docked at the isolated ABC exporter in the test tube. Using X-ray crystallography and electron spin resonance, the team showed that the sybody binds to the open outer gate. As a result of this, the gate was no longer able to close and thus no new transport process could be initiated. Consequently, the motor inside remained switched off; no more ATP was split.

The group confirmed the results in further experiments without the sybody. In these, they specifically replaced certain amino acids of the protein using genetic mutation; this also blocked the closing mechanism of the outer gate and ATP splitting.

"Our analyses have shown that the mechanism to open and close the outer gate is structurally related to the splitting of the energy supplier ATP on the inside," describes Enrica Bordignon. "Our results are fundamental research," says the head of the Bocum-based EPR Spectroscopy Research Group. "We hope to use this information to open up new approaches to combat drug resistance."
-end-
Joint press release by University of Zurich and Ruhr-Universität Bochum

Ruhr-University Bochum

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.