Nav: Home

Gold for iron nanocubes

June 17, 2019

A recent study revealed that by decorating iron nanocubes with gold the functionality of nanoparticles can be increased.

One of the major challenges in nanotechnology is the precise control of shape, size and elemental composition of every single nanoparticle. Physical methods are able to produce homogeneous nanoparticles free of surface contamination. However, they offer limited opportunity to control the shape and specific composition of the nanoobjects when they are being built up.

A recent collaboration between the University of Helsinki and the Okinawa Institute of Science and Technology (OIST) Graduate University revealed that hybrid Au/Fe nanoparticles can grow in an unprecedentedly complex structure with a single-step fabrication method. Using a computational modelling framework, the groups of Professor Flyura Djurabekova at the University of Helsinki and Prof. Sowwan at OIST succeeded in deciphering the growth mechanism by a detailed multistage model.

Elegantly combined considerations of kinetic and thermodynamic effects explained the formation of embedded gold layers and the site-specific surface gold decoration. These results open up a possibility for engineering a multitude of hybrid nanoparticles for a wide range of emerging applications. Their research was recently published in the highly ranked open access journal Advanced Science.

"When nature surprises us with an unexpectedly beautiful pattern, we must recognize it and explain. This is the way to cooperate with nature that is always ready to teach and expecting us to learn," says Dr. Junlei Zhao, a postdoctoral researcher in the group of Prof. Djurabekova.

Nowadays, scientists are able to study nano-scale phenomena with great accuracy by using high-performance computational software and modern supercomputing infrastructures. These are of great support, not only for advancing fundamental science but also for finding promising solutions for many challenges of humanity.
-end-
Site-Specific Wetting of Iron Nanocubes by Gold Atoms in Gas-Phase Synthesis. Jerome Vernieres, Stephan Steinhauer, Junlei Zhao, Panagiotis Grammatikopoulos, Riccardo Ferrando, Kai Nordlund, Flyura Djurabekova, Mukhles Sowwan. Advanced Science, 02 May 2019

More information

University Researcher, Dr Flyura Djurabekova, Research group Materials for Accelerator Technology, University of Helsinki, flyura.djurabekova@helsinki.fi, +358 504480924
Twitter: @FlyuraD

University of Helsinki

Related Nanoparticles Articles:

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.
3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?
Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.
Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.
A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.
Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.
Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.
What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.
Lighting up cardiovascular problems using nanoparticles
A new nanoparticle innovation that detects unstable calcifications that can trigger heart attacks and strokes may allow doctors to pinpoint when plaque on the walls of blood vessels becomes dangerous.
Cutting nanoparticles down to size -- new study
A new technique in chemistry could pave the way for producing uniform nanoparticles for use in drug delivery systems.
More Nanoparticles News and Nanoparticles Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.