Nav: Home

Bright lights outdoors may help treat lazy eye in children

June 17, 2019

NEW YORK, June 17, 2019 -- The maturation of visual acuity in both amblyopia and myopia may be closely associated with the development of pathways signaling bright features in the brain, according to research published in the Journal of Neuroscience by SUNY College of Optometry doctoral candidate Carmen Pons Torres and colleagues in the laboratory of distinguished professor Dr. Jose-Manuel Alonso.

While past research indicated that amblyopia, also known as lazy eye, equally affects the brain pathways signaling bright and dark features in an image, Ms. Pons Torres found that amblyopia affects the perception of bright features more than dark features. Her research also shows that, as amblyopia becomes more severe and the images projected in the eye lose detail, bright targets become increasingly difficult to discern. This recent work opens the possibility to treat amblyopia by strengthening weakened brain pathways that signal bright stimuli.

Amblyopia is a developmental problem of the brain that compromises visual acuity in two to five percent of children around the world. Children typically develop amblyopia in one eye and the current treatment is to patch the healthy eye to force the lazy eye to work harder.

Despite being in use for centuries, such patching treatments are problematic. Amblyopia may go undiagnosed for years and patching is less effective in mature brains, there is a high risk of amblyopia recurrence after patching interruption, and low compliance remains prominent as children often do not like to wear the eye patch and tend to remove the treatment when unsupervised.

Previous work from the Alonso lab published in the Journal of Vision by Pons, et al. has shown that low light and optical blur (e.g. reading indoors under dim light) affect the perception of bright targets more than dark targets. Both low light and optical blur are risk factors in myopia, or nearsightedness, which is another developmental problem affecting visual acuity. Another recent study from the Alonso team published in Cell Reports by SUNY Optometry postdoctoral researcher Dr. Reece Mazade, et al. found that these pathways are best stimulated with large bright long-lasting targets, particularly sky patches, which are bright, large and slow-moving.

Both new findings open the door for further exploration of new treatments that use natural visual stimuli more effectively to promote healthier visual behaviors, including wearable devices that monitor vision outdoors.
-end-
Significance Statement from the Original Paper in the Journal of Neuroscience

Amblyopia is a loss of vision that affects 2-5% of children across the world and originates from a deficit in visual cortical circuitry. Current models assume that amblyopia affects similarly ON and OFF visual pathways, which signal light and dark features in visual scenes. Against this current belief, here we demonstrate that amblyopia affects the ON visual pathway more than the OFF, a finding that could have implications for new amblyopia treatments targeted at strengthening a weak ON visual pathway.

Abstract from the Original Paper in the Journal of Neuroscience

Visual information reaches the cerebral cortex through parallel ON and OFF pathways that signal the presence of light and dark stimuli in visual scenes. We have previously demonstrated that optical blur reduces visual salience more for light than dark stimuli because it removes the high spatial frequencies from the stimulus, and low spatial frequencies drive weaker ON than OFF cortical responses. Therefore, we hypothesized that sustained optical blur during brain development should weaken ON cortical pathways more than OFF, increasing the dominance of darks in visual perception. Here we provide support for this hypothesis in humans with anisometropic amblyopia who suffered sustained optical blur early after birth in one of the eyes. In addition, we show that the dark dominance in visual perception also increases in strabismic amblyopes that have their vision to high spatial frequencies reduced by mechanisms not associated with optical blur. Taken together, we show that amblyopia increases visual dark dominance by three to ten times and that the increase in dark dominance is strongly correlated with amblyopia severity. These results can be replicated with a computational model that uses greater luminance/response saturation in ON than OFF pathways and, as a consequence, reduces more ON than OFF cortical responses to stimuli with low spatial frequencies. We conclude that amblyopia affects the ON cortical pathway more than the OFF, a finding that could have implications for future amblyopia treatments.

More information about this study may be downloaded here: https://www.dropbox.com/sh/pmjquunpvi56rlq/AAB5D0HedS45S09zvqLSK7E7a?dl=0

SUNY Optometry

Related Brain Articles:

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
Brain sciences researcher pinpoints brain circuit that triggers fear relapse
Steve Maren, the Claude H. Everett Jr. '47 Chair of Liberal Arts professor in the Department of Psychological and Brain Sciences at Texas A&M University, and his Emotion and Memory Systems Laboratory (EMSL) have made a breakthrough discovery in the process of fear relapse.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.