Nav: Home

Breakthrough in understanding how human eyes process 3D motion

June 17, 2019

Scientists at the University of York have revealed that there are two separate 'pathways' for seeing 3D motion in the human brain, which allow people to perform a wide range of tasks such as catching a ball or avoiding moving objects.

The new insight could help further understanding into how to alleviate the effects of lazy eye syndrome, as well as how industry could develop better 3D visual displays and virtual reality systems.

Much of what scientists know about 3D motion comes from comparing the 'stereoscopic' signals generated by a person's eyes, but the exact way the brain processes these signals has not been fully understood in the past.

Scientists at the Universities of York, St Andrews, and Bradford have now shown that there are two ways the brain can compute 3D signals, not just one as previously thought.

They found that 3D motion signals separate into two 'pathways' in the brain at an early stage of the image transmission between the eyes and the brain.

Dr Alex Wade from the University of York's Department of Psychology, said: "We know that we have two signals from our visual system that helps the brain compute 3D motion - one is a fast signal and one is a slow signal.

"This helps us in a number of ways, with our hand-eye coordination for example, or so that we don't fall over navigating around objects. What we didn't know was what the brain did with these signals to allow us to understand what is going on in front of our eyes and react appropriately.

"Using brain imaging technology we were able to see that two 3D motion signals are separated out into two distinct pathways in the brain, allowing information to be extracted simultaneously and indicating to the visual system that it is encountering a 3D moving object."

The research team had previously shown that people with lazy eye syndrome might still be able to see 'fast' 3D motion signals, despite them having very poor 3D vision in general. Now that scientists understand how this pathway works, there is the potential to build tests to measure and monitor therapies aimed at curing the condition.

Dr Milena Kaestner, who conducted the work as part of her PhD at the University of York, said: "We were also surprised to see a link between 3D motion signals and how the brain receives information about colour. We now believe that colour might be more important in this type of visual processing than we previously thought.

"The visual pathways for colour have been thought to be independent of signals about motion and depth, but the research suggests that there could be a connection in the brain between these three visual properties."

Dr Julie Harris, from St Andrews University, said: "Knowing more about our visual system, and particularly how motion, depth and colour could all be connected in the brain, could help in a number of research areas into what happens when these pathways go wrong, resulting in visual disturbances that impact negatively on people's quality of life."

The research is published in the journal Proceedings of the National Academy of Sciences (PNAS).
-end-


University of York

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...