Self-powered 'paper chips' could help sound an early alarm for forest fires

June 17, 2020

Recent devastating fires in the Amazon rain forest and the Australian bush highlight the need to detect forest fires at early stages, before they blaze out of control. Current methods include infrared imaging satellites, remote sensing, watchtowers and aerial patrols, but by the time they sound the alarm, it could be too late. Now, researchers reporting in ACS Applied Materials & Interfaces have developed self-powered "paper chips" that sense early fires and relay a signal.

Previously, scientists have proposed placing a network of sensors in the forest that could detect changes in temperature, smoke or humidity and wirelessly transmit a signal to responders. However, such a system hasn't yet seemed practical because all of the sensing components require power. Batteries would eventually go dead and need to be replaced. Thermoelectric materials, which convert temperature differences into electricity, could simultaneously detect temperature increases from fires and power themselves. However, most of these materials are solid inorganic semiconductors, which are often expensive, rigid and environmentally unfriendly. Yapei Wang and colleagues wanted to find out if ionic liquids could be used as thermoelectric materials for fire sensing. These fluids are salts in the liquid state, and two different types of ionic liquids can be connected in series to generate signals.

To make paper-based thermoelectric sensors, the researchers chose two ionic liquids that behaved differently when the temperature increased: One adsorbed to the surface of gold electrodes, while the other desorbed, producing opposite (positive or negative) voltages. They deposited each ionic liquid like an ink between two gold electrodes that were sputtered onto a piece of ordinary paper. When connected in series, the two ionic liquids produced an electric signal when a large temperature difference occurred, as would happen in a fire. In a pilot test of the new sensor, the researchers attached one to a houseplant. When they placed a flaming cotton ball close to the plant's roots, the temperature at the bottom of the sensor quickly increased, producing a voltage signal that an attached microcomputer chip wirelessly transmitted to a receiver. Upon picking up the signal, the receiver activated a sound alarm and a red light. The thermoelectric paper chips are cheap ($0.04), and the materials are eco-friendly, the researchers say.
-end-
The authors acknowledge funding from the National Natural Science Foundation of China and the National Key R&D Program of China.

The abstract that accompanies this paper can be viewed here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Ionic Liquids Articles from Brightsurf:

A new candidate material for quantum spin liquids
Using a unique material, EPFL scientists have been able to design and study an unusual state of matter, the Quantum Spin Liquid.

Porous liquids allow for efficient gas separation
Jointly with partners, a researcher of Karlsruhe Institute of Technology has developed 'porous liquids': Nanoparticles, that are able to separate gas molecules of different sizes from each other, float - finely distributed - in a solvent.

Space invaders as MOFs act as liquids
Modified metal organic frameworks that can behave as porous liquids offer new possibilities for gas separation technologies.

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.

Optical 'nanomixer': Scientists propose new method for mixing liquids
Every now and then, scientists need to control the process of mixing liquids in vessels so small that the thinnest needle or even a hair wouldn't fit in there.

New route of assembly and ionic channel traffic in cardiac cells
Ionic channels -integral proteins in the cell membrane- are essential in several processes such as cardiac activity, nervous transmission, cell proliferation and the regulation of blood pressure.

Cases of poisoning: Liquids containing cannabidiols for e-cigarettes can be manipulated
The health risks of e-cigarettes have come into focus after the deaths of several 'vapers' due to lung injury in the USA recently.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Physicists prove that 2D and 3D liquids are fundamentally different
A 50-year-old puzzle in statistical mechanics has been solved by an international team of researchers who have proved that two-dimensional (2D) liquids have fundamentally different dynamical properties to three-dimensional (3D) liquids.

Fast ionic transport interphase for stable Mg metal anodes in conventional electrolyte
Researchers report a simple, safe and effectively method to resolve the irreversibly plating/stripping problem in Mg(TFSI)2/DME electrolyte.

Read More: Ionic Liquids News and Ionic Liquids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.