Nav: Home

Microbes might manage your cholesterol

June 17, 2020

In the darkest parts of the world where light fails to block out the unfathomable bounty of the stars, look up. There are still fewer specks illuminating the universe than there are bacteria in the world, hidden from sight, a whole universe inside just one human gut.

Many species are known, like E. coli, but many more, sometimes referred to as "microbial dark matter," remain elusive. "We know it's there," said Doug Kenny, a Ph.D. candidate in the Graduate School of Arts and Sciences, "because of how it affects things around it." Kenny is co-first author on a new study in Cell Host and Microbe that illuminates a bit of that microbial dark matter: a species of gut bacteria that can affect cholesterol levels in humans.

"The metabolism of cholesterol by these microbes may play an important role in reducing both intestinal and blood serum cholesterol concentrations, directly impacting human health," said Emily Balskus, professor of chemistry and chemical biology at Harvard University and co-senior author with Ramnik Xavier, , core member at the Broad, co-director of the Center for informatics and therapeutics at MIT and investigator at Massachusetts General Hospital. The newly discovered bacteria could one day help people manage their cholesterol levels through diet, probiotics, or novel treatments based on individual microbiomes.

According to the Centers for Disease Control and Prevention (CDC), in 2016, over 12 percent of adults in the United States age 20 and older had high cholesterol levels, a risk factor for the country's number one cause of death: heart disease. Only half of that group take medications like statins to manage their cholesterol levels; while such drugs are a valuable tool, they don't work for all patients and, though rare, can have concerning side effects.

"We're not looking for the silver bullet to solve cardiovascular disease," Kenny said, "but there's this other organ, the microbiome, another system at play that could be regulating cholesterol levels that we haven't thought about yet."

The hog sewage lagoon

Since the late 1800s, scientists knew that something was happening to cholesterol in the gut. Over decades, work inched closer to an answer. One study even found evidence of cholesterol-consuming bacteria living in a hog sewage lagoon. But those microbes preferred to live in hogs, not humans.

Prior studies are like a case file of clues (one 1977 lab even isolated the telltale microbe but the samples were lost). One huge clue is coprostanol, the byproduct of cholesterol metabolism in the gut. "Because the hog sewage lagoon microbe also formed coprostanol," said Balskus, "we decided to identify the genes responsible for this activity, hoping we might find similar genes in the human gut."

Meanwhile, Damian Plichta, a computational scientist at the Broad Institute and co-first author with Kenny, searched for clues in human data sets. Hundreds of species of bacteria, viruses and fungi that live in the human gut have yet to be isolated and described, he said. But so-called metagenomics can help researchers bypass a step: Instead of locating a species of bacteria first and then figuring out what it can do, they can analyze the wealth of genetic material found in human microbiomes to determine what capabilities those genes encode.

Plichta cross-referenced massive microbiome genome data with human stool samples to find which genes corresponded with high levels of coprostanol. "From this massive amount of correlations," he said, "we zoomed in on a few potentially interesting genes that we could then follow up on." Meanwhile, after Balskus and Kenny sequenced the entire genome of the cholesterol-consuming hog bacterium, they mined the data and discovered similar genes: A signal that they were getting closer.

The human connection

Then Kenny narrowed their search further. In the lab, he inserted each potential gene into bacteria and tested which made enzymes to break down cholesterol into coprostanol. Eventually, he found the best candidate, which the team named the Intestinal Steroid Metabolism A (IsmA) gene.

"We could now correlate the presence or absence of potential bacteria that have these enzymes with blood cholesterol levels collected from the same individuals," said Xavier. Using human microbiome data sets from China, Netherlands and the United States, they discovered that people who carry the IsmA gene in their microbiome had 55 to 75 percent less cholesterol in their stool than those without.

"Those who have this enzyme activity basically have lower cholesterol," Xavier said.

The discovery, Xavier said, could lead to new therapeutics--like a "biotic cocktail" or direct enzyme delivery to the gut--to help people manage their blood cholesterol levels. But there's a lot of work to do first: The team may have identified the crucial enzyme, but they still need to isolate the microbe responsible. They need to prove not just correlation but causation--that the microbe and its enzyme are directly responsible for lowering cholesterol in humans. And, they need to analyze what effect coprostanol, the reaction byproduct, has on human health.

"It doesn't mean that we're going to have answers tomorrow, but we have an outline of how to go about it," Xavier said.

Harvard University

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.