Quantum diamond sensing

June 17, 2020

Nuclear magnetic resonance (NMR) spectroscopy is a widely used tool for chemical analysis and molecular structure recognition. Because it typically relies on the weak magnetic fields produced by a small thermal nuclear spin polarization, NMR suffers from poor sensitivity compared to other analytical techniques. A conventional NMR apparatus typically uses large sample volumes of about a milliliter -- large enough to contain around a million biological cells.

In a study published in Physical Review X (PRX), researchers from the University of Maryland's Quantum Technology Center (QTC) and colleagues report a new quantum sensing technique that allows high-resolution NMR spectroscopy on small molecules in dilute solution in a 10 picoliter sample volume -- roughly equivalent to a single cell.

The experiments reported in the paper, entitled "Hyperpolarization-Enhanced NMR Spectroscopy with Femtomole Sensitivity Using Quantum Defects in Diamond," were performed by the research group of Prof. Ronald Walsworth, QTC Founding Director. Their finding is the next step in previous results, in which Walsworth and collaborators developed a system that utilizes nitrogen-vacancy quantum defects in diamonds to detect the NMR signals produced by picoliter-scale samples. In this past work, the researchers could only observe signals from pure, highly concentrated samples. To overcome this limitation, Walsworth and colleagues combined quantum diamond NMR with a "hyperpolarization" method that boosts the sample's nuclear spin polarization -- and hence NMR signal strength -- by more than a hundred-fold. The results reported in PRX realize, for the first time, NMR with femtomole molecular sensitivity.

On the impact of the research, Walsworth says, "The real-world goal is to enable chemical analysis and magnetic resonance imaging (MRI) at the level of individual biological cells." MRI is a type of scan that can process detailed pictures of parts of the body, including the brain. "Right now, MRI is limited in its resolution, and it can only image volumes containing about a million cells. Seeing individual cells noninvasively with MRI (to help diagnose illness and answer basic questions in biology) is one of the long-term goals of quantum sensing research," says Walsworth.

University of Maryland

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.