Nav: Home

Silence is golden when it comes to how our brains work

June 18, 2018

AUGUSTA, Ga. (June 18, 2018) - It's the comparative silence between the firing spikes of neurons that tells what they are really up to, scientists report.

"The brain appears to use these durations of silence to encrypt information," Dr. Joe Z. Tsien, neuroscientist at the Medical College of Georgia at Augusta University says of his new Neural Self-Information Theory.

It's widely held that neurons generate perceptions, thoughts and actions by emitting electrical pulses called action potentials or spikes. One problem with that standard measure of neuron action is that neurons are essentially always firing at some level and with spontaneous fluctuation, even when it's not clear what is happening as a result, says Tsien, Georgia Research Alliance Eminent Scholar in Cognitive and Systems Neurobiology and a corresponding author of the study in the journal Cerebral Cortex.

He uses the analogy of an ocean surface that may look calm compared to a tsunami, but is never truly still. Many scientists have noted that there can also be variation in how even the same neuron responds to the same stimulus or even a quiet, resting state. Yet, there must be some kind of operating principle that enables us to think and act in real time in the face of this ongoing variability, he says. Brain scientists call the decades-old puzzle cracking the neural code.

Tsien's team has evidence from monitoring mouse neurons during various activities that the magic happens when you see a group of neurons each entering an atypical state for them - not of firing - but of the relative periods of silence between the firing and entering that period at the same time.

These silent spaces between overt firing are called interspike intervals, and, the neurons having atypical intervals at the same time are part of a clique generating perceptions, actions and thoughts in real time, he theorizes.

"These cells belong to the same group, an assembly," Tsien says. "It's a very general finding about how neuron activity codes information."

Applying this new Neural Self-Information Theory, they have identified 15 groups of cell assemblies in the cortex and hippocampus of the brain that work together to enable things like sleep cycles, sensing where you are and how you act in response to things you see and experience.

For example, they studied mice playing a game where a light shines on a wall and the mouse learns that if he pokes a hole in that same spot, rather than four other choices, he will get a food pellet when he returns to where he started. If he doesn't come back in time or pokes the wrong hole, no food pellet awaits. "It's a simple task but highly attention driven, and how the brain executes this task was poorly understood," Tsien says.

"To identify the cell cliques that help the mouse be successful, you have to find out what each neuron's interspike intervals looks like when they are out of their normal range of occurrence," Tsien says. "Among all the cells you record, you then identify the ones that move into that different state - called a surprisal state - at the same time." This time he uses the analogy of a normally chatty individual in an uncharacteristic period of silence.

"That is when these cells start to act as a clique," he says. "That is when the neural cliques are coming together to encode a train of thought or a set of actions. If it's what happens usually, that means it does not carry much information, it's like a ground state," Tsien adds.
-end-


Medical College of Georgia at Augusta University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...