Nav: Home

Constructing new tissue shapes with light

June 18, 2018

Constructing biological tissues, such as skin, muscle, or bone, in customized shapes is now one step closer. Researchers at EMBL have succeeded in guiding the folding and thus shape of tissues with optogenetics: a technique to control protein activity with light. Nature Communications publishes their results, with implications for regenerative medicine, on 18 June.

The changing of tissue shapes in an embryo is essential for healthy development. Stefano De Renzis and his group members at EMBL are interested in the mechanisms behind these shape transitions, also called morphogenesis. They use optogenetics - a technique providing precise light-mediated control of protein activity - to study changes in tissue shapes.

Uncoupling the link between shape and function

In the current paper, Emiliano Izquierdo, Theresa Quinkler, and Stefano De Renzis used optogenetics to reconstruct epithelial folding: a fundamental process during development, where cells move inwards and fold into the embryo, eventually giving rise to internal tissues like muscles, for example. Remarkably, they achieved this in cells that normally do not undergo this process. De Renzis, who led the study: "We've uncoupled the link between the shape and function of a cell. This allows us to, for the first time, built tissues in certain shape without affecting the cell's expertise."

Image 1. Three examples of the tissue shapes the team created. The black and white square, circle and triangle on the left correspond to the cells that were illuminated. On the right, three fruit fly embryos are shown in cyan, magenta and yellow, demonstrating how the illuminated cells folded inwards after the light-activation.

Precise control

"The great thing about using optogenetics to guide morphogenesis is that it is a very precise technique", says Emiliano Izquierdo, first author of the study. "We were able to define various shapes, and by alternating the timing and strength of illumination, we could control how far the cells folded inwards."

Image 2. Example of optogenetics-guided tissue folding. The top image shows an embryo 10 minutes after illumination , and the bottom one 13 minutes afterwards: light-activated cells have folded inwards and thus moved downwards, creating a furrow.

From fruit fly to the clinic?

The research was done in developing fruit flies, but since epithelial folding is a conserved process across evolution, De Renzis expects these methods to also be applicable in other organisms and ex vivo stem cell culture systems. In that case, optogenetics could be an ideal technique for reconstructing and directing tissue development, which could be used to (re)build artificial tissues in regenerative medicine.
-end-
https://www.youtube.com/watch?v=l-UmjEc0mGo&t=121s

Video about optogenetics and how the technique is used at EMBL.

European Molecular Biology Laboratory

Related Regenerative Medicine Articles:

MDI Biological Laboratory to offer symposium on latest advances in regenerative medicine
The MDI Biological Laboratory in Bar Harbor, Maine, will sponsor a symposium entitled 'Learning from Nature: Comparative Biology of Tissue Regeneration and Aging,' Aug.
Canada continues to punch above its weight in the field of regenerative medicine
A new workshop report, Building on Canada's Strengths in Regenerative Medicine, released today by the Council of Canadian Academies (CCA), confirms that Canadian researchers continue to be recognized as scientific leaders in the field of regenerative medicine and stem cell science.
Exploring the past, present and future of regenerative medicine
The award-winning, MEDLINE-indexed journal Regenerative Medicine has released a special focus issue on the 10th anniversary of the publication's launch highlighting the key developments in the last 10 years.
Center for Regenerative Medicine receives 3 prestigious NIH awards
The Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine has received three prestigious awards from the National Institutes of Health to further its commitment to induced pluripotent stem cell research and education.
Pitt researchers solve mystery on how regenerative medicine works
Researchers identify mechanism by which bioscaffolds used in regenerative medicine influence cellular behavior, a question that has remained unanswered since the technology was first developed several decades ago.
Regenerative medicine improves strength and function in severe muscle injuries
Patients with severe muscle loss surgically implanted with bioscaffolds derived from pig tissue showed significant improvement in strength and range of motion, as well as evidence for skeletal muscle regeneration.
Gauging stem cells for regenerative medicine
Salk researchers and collaborators provide a new benchmark for generating the most primitive type of stem cell.
New approach for regenerative diabetes therapy
The marker Flattop subdivides the insulin-producing beta cells of the pancreas into those that maintain glucose metabolism and into immature cells that divide more frequently and adapt to metabolic changes.
Regenerative medicine offering new treatment for bronchopleural fistulas
For the first time in human application, Mayo Clinic researchers successfully closed an open wound on the upper chest caused by postoperative complications of lung removal.
Expansion of kidney progenitor cells toward regenerative medicine
The kidney is a difficult organ to regenerate. However, in a big step forward for kidney regeneration research, a collaboration between scientists from Japan and the US has successfully demonstrated a method of increasing kidney progenitor cell proliferation in vitro.

Related Regenerative Medicine Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".