Nav: Home

Observation of anisotropic magneto-Peltier effect

June 18, 2018

For the first time in the world, NIMS and Tohoku University jointly observed an anisotropic magneto-Peltier effect--a thermoelectric conversion phenomenon in which simple redirection of a charge current in a magnetic material induces heating and cooling. Thermoelectric heating and cooling are conventionally achieved by applying a charge current to a junction between two different electrical conductors. In this research, we demonstrated a novel thermal control function using a single magnetic material without relying on a junction structure. Although the anisotropic magneto-Peltier effect is one of the fundamental thermoelectric conversion phenomena, it remained to be observed. We hope that this report will stimulate further advances in basic and applied research on thermoelectric conversion.

Conversion between charge and heat currents can be achieved in metals and semiconductors by means of the thermoelectric effect. A well-known example of the conversion is the Peltier effect, whereby a conductor can be heated or cooled by applying a charge current. Although the Peltier effect was discovered almost 200 years ago, global research activities on this subject remain active today in an effort to increase the thermoelectric conversion efficiency in electronic devices and apply this phenomenon to a wider range of technologies (e.g., development of more energy-efficient computers).

The NIMS-led research team used a thermal measurement technique called lock-in thermography to make systematic measurements of temperature changes in a magnetic material while a charge current was applied. As a result, we observed changes in the Peltier coefficient in relation to the angle between the direction of the charge current and the direction of the magnetization in the magnetic material. It has been previously observed that the Seebeck effect--a phenomenon in which a temperature difference between a conductor produces a charge current--changes in relation to the direction of magnetization; this is called the anisotropic magneto-Seebeck effect. However, the anisotropic magneto-Peltier effect, which is the reciprocal of the anisotropic magneto Seebeck effect, had not been observed before this research.

Application of the anisotropic magneto-Peltier effect may enable thermoelectric temperature control of a magnetic material by simply redirecting a charge current in the material and creating a non-uniform magnetization configuration within it, rather than forming a junction between two different electrical conductors. In future studies, we will attempt to identify and develop magnetic materials that exhibit large anisotropic magneto-Peltier effects and apply them to the development of thermal management technologies that make electronic devices energy-efficient.
-end-
This research project was carried out by Ken-ichi Uchida (Group Leader, Spin Caloritronics Group, Research Center for Magnetic and Spintronic Materials, NIMS), Ryo Iguchi (Researcher, Spin Caloritronics Group, Research Center for Magnetic and Spintronic Materials, NIMS), Shunsuke Daimon (Graduate Student, Institute for Materials Research and Advanced Institute for Materials Research, Tohoku University; currently Assistant Professor of The University of Tokyo) and Eiji Saitoh (Professor, Institute for Materials Research and Advanced Institute for Materials Research, Tohoku University; currently Professor of the University of Tokyo).

This project was supported mainly by the JST Strategic Basic Research Program CREST (JPMJCR17I1) and the JSPS Grant-in-Aid for Scientific Research (A) (JP15H02012).

This research was published in the online version of the British scientific journal Nature at May 22, 2018, Japan Time.

Contacts

(Regarding this research)
Ken-ichi Uchida
Group Leader, Spin Caloritronics Group
Research Center for Magnetic and Spintronic Materials
National Institute for Materials Science
Tel: +81-29-859-2062
Fax: +81-29-859-2701
URL: http://www.nims.go.jp/mmu/scg/
Email: UCHIDA.Kenichi@nims.go.jp

National Institute for Materials Science, Japan

Related Research Articles:


Related Research Reading:

Research Design: Qualitative, Quantitative, and Mixed Methods Approaches
by John W. Creswell (Author), J. David Creswell (Author)

The Craft of Research, Fourth Edition (Chicago Guides to Writing, Editing, and Publishing)
by Wayne C. Booth (Author), Gregory G. Colomb (Author), Joseph M. Williams (Author), Joseph Bizup (Author), William T. FitzGerald (Author)

Qualitative Inquiry and Research Design: Choosing Among Five Approaches
by John W. Creswell (Author), Cheryl N. Poth (Author)

Quantitative and Statistical Research Methods: From Hypothesis to Results
by William E. Martin (Author), Krista D. Bridgmon (Author)

Understanding Research Methods
by Mildred L. Patten (Author), Michelle Newhart (Editor)

Research Methodology: A Step-by-Step Guide for Beginners
by Ranjit Kumar (Author)

A Manual for Writers of Research Papers, Theses, and Dissertations, Ninth Edition: Chicago Style for Students and Researchers (Chicago Guides to Writing, Editing, and Publishing)
by Kate L. Turabian (Author), Wayne C. Booth (Editor), Gregory G. Colomb (Editor), Joseph M. Williams (Editor), Joseph Bizup (Editor), William T. FitzGerald (Editor), The University of Chicago Press Editorial Staff (Editor)

Research Project Management: 25 Free Tools (Evaluation Works’ Research Guides Book 1)
by Evaluation Works

Research Methods: The Basics: 2nd edition
by Routledge

Research Design: Qualitative, Quantitative and Mixed Methods Approaches
by John W. Creswell (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.