Using gold nanoparticles to trigger sequential unfolding of 3D structures

June 18, 2018

Researchers from North Carolina State University have developed a new technique that takes advantage of gold nanoparticles to trigger the sequential unfolding of three-dimensional structures using different wavelengths of light.

Specifically, the technique makes use of the fact that different shapes of gold nanoparticles convert different wavelengths of light into heat.

In this instance, researchers embedded gold nanospheres and nanorods into different areas of a shape memory polymer. The polymer can then be folded into a desired shape. When exposed to light wavelengths of 530 nanometers (nm), or green light, the folds in the part embedded with nanospheres unfold. When exposed to wavelengths of 860 nm, or near infrared, the nanorod-embedded regions unfold.

"This approach can be used at room temperature, and allows for significant flexibility, since you can control the wavelength that the material responds to by manipulating the shape of the gold nanoparticles," says Joe Tracy, an associate professor of materials science and engineering at NC State and corresponding author of a paper describing the work.

"This is an important advance because it directly connects the tunable optical properties of noble metal nanoparticles with remote triggering of sequential processes for applications in soft robotics, such as biomedical implants," Tracy says.

A related technique developed at NC State to direct sequential folding is to place colored inks on one side of prestretched polymers, which heat up and bend when exposed to different wavelengths of light.
-end-
The paper, "Sequential Actuation of Shape-Memory Polymers through Wavelength-Selective Photothermal Heating of Gold Nanospheres and Nanorods," is published in the journal Applied Nano Materials. First author of the paper is Sumeet Mishra, a former Ph.D. student at NC State. The work was supported by the National Science Foundation under grant DMR-1056653, and by the Research Triangle MRSEC - which is funded by NSF grant DMR-121107.

North Carolina State University

Related Gold Nanoparticles Articles from Brightsurf:

Gold nanoparticles turn the spotlight on drug candidates in cells
A team including researchers from Osaka University has developed a surface-enhanced Raman scattering (SERS) microscopy technique for tracking small molecules in live cells.

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells
Researchers published a seminal study in Nature Communications that demonstrates for the first time a method of biosynthesizing plasmonic gold nanoparticles within cancer cells, without the need for conventional bench-top lab methods.

From nanocellulose to gold
When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties.

Gold nanoparticles to save neurons from cell death
An international research team coordinated by Istituto Italiano di Tecnologia in Lecce (Italy) has developed gold nanoparticles able to reduce the cell death of neurons exposed to overexcitement.

A potential breakthrough in obesity medicine with the help of gold nanoparticles
A team of researchers in Korea believes to have discovered a synthetic gold-based compound which may help patients with obesity.

Peppered with gold
Terahertz waves are becoming more important in science and technology.

Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.

Gold nanoparticles detect signals from cancer cells
A novel blood test that uses gold nanoparticles to detect cancer has also been shown to identify signals released by cancer cells.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Gold nanoparticles shown to be safe and effective treatment for prostate cancer
Bio-compatible gold nanoparticles designed to convert near-infrared light to heat have been shown to safely and effectively ablate low- to intermediate-grade tumors within the prostate, according to a study conducted at the Icahn School of Medicine and published in the journal Proceedings of the National Academy of Sciences.

Read More: Gold Nanoparticles News and Gold Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.