Nav: Home

Hunting molecules to find new planets

June 18, 2018

Each exoplanet revolves around a star, like the Earth around the Sun. This is why it is generally impossible to obtain images of an exoplanet, so dazzling is the light of its star. However, a team of astronomers, led by a researcher from the University of Geneva (UNIGE) and member of NCCR PlanetS, had the idea of detecting certain molecules that are present in the planet's atmosphere in order to make it visible, provided that these same molecules are absent from its star. Thanks to this innovative technique, the device is only sensitive to the selected molecules, making the star invisible and allowing the astronomers to observe the planet directly. The results appear in the journal Astronomy & Astrophysics.

Until now, astronomers could only very rarely directly observe the exoplanets they discovered, as they are masked by the enormous luminous intensity of their stars. Only a few planets located very far from their host stars could be distinguished on a picture, in particular thanks to the SPHERE instrument installed on the Very Large Telescope (VLT) in Chile, and similar instruments elsewhere. Jens Hoeijmakers, researcher at the Astronomy Department of the Observatory of the Faculty of Science of the UNIGE and member of NCCR PlanetS, wondered if it would be possible to trace the molecular composition of the planets. "By focusing on molecules present only on the studied exoplanet that are absent from its host star, our technique would effectively "erase" the star,leaving only the exoplanet," he explains.

Erasing the star thanks to molecular spectra

To test this new technique, Jens Hoeijmakers and an international team of astronomers used archival images taken by the SINFONI instrument of the star beta pictoris, which is known to be orbited by a giant planet, beta pictoris b. Each pixel in these images contains the spectrum of light received by that pixel. The astronomers then compared the spectrum contained in the pixel with a spectrum corresponding to a given molecule, for example water vapour, to see if there is a correlation. If there is a correlation, it means that the molecule is present in the atmosphere of the planet.

By applying this technique to beta pictoris b, Jens Hoeijmakers notices that the planet becomes perfectly visible when he looks for water (H2O) or carbon monoxide (CO). However, when he applies his technique to methane (CH4) and ammonia (NH3), the planet remains invisible, suggesting the absence of these molecules in the atmosphere of beta pictoris b.

Molecules, new planetary thermometer

The host star beta pictoris remains invisible in all four situations. Indeed, this star is extremely hot and at this high temperature, these four molecules are destroyed. "This is why this technique allows us not only to detect elements on the surface of the planet, but also to sense the temperature which reigns there", explains the astronomer of the UNIGE. The fact that astronomers cannot find beta pictoris b using the spectra of methane and ammonia is therefore consistent with a temperature estimated at 1700 degrees for this planet, which is too high for these molecules to exist.

"This technique is only in its infancy", enthuses Jens Hoeijmakers. "It should change the way planets and their atmospheres are characterized. We are very excited to see what it will give on future spectrographs like ERIS on the Very Large Telescope in Chile or HARMONI on the Extremely Large Telescope which will be inaugurated in 2025, also in Chile," he concludes.
-end-


Université de Genève

Related Planets Articles:

Ultracool dwarf and the 7 planets
Astronomers have found a system of seven Earth-sized planets just 40 light-years away.
ALMA measures size of seeds of planets
Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA), have for the first time, achieved a precise size measurement of small dust particles around a young star through radio-wave polarization.
Origin of minor planets' rings revealed
A team of researchers has clarified the origin of the rings recently discovered around two minor planets known as centaurs, and their results suggest the existence of rings around other centaurs.
Are planets setting the sun's pace?
The sun's activity is determined by the sun's magnetic field.
A better way to learn if alien planets have the right stuff
A new method for analyzing the chemical composition of stars may help scientists winnow the search for Earth 2.0.
A new Goldilocks for habitable planets
The search for habitable, alien worlds needs to make room for a second 'Goldilocks,' according to a Yale University researcher.
Probing giant planets' dark hydrogen
Hydrogen is the most-abundant element in the universe, but there is still so much we have to learn about it.
Universe's first life might have been born on carbon planets
Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life.
Number of habitable planets could be limited by stifling atmospheres
New research has revealed that fewer than predicted planets may be capable of harbouring life because their atmospheres keep them too hot.
Footprints of baby planets in a gas disk
A new analysis of the ALMA data for a young star HL Tauri provides yet more firm evidence of baby planets around the star.

Related Planets Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".