Researchers create novel combination as potential therapy for high-risk neuroblastoma

June 18, 2018

Researchers at VCU Massey Cancer Center in Richmond, Virginia, have identified a promising target to reverse the development of high-risk neuroblastoma and potentially inform the creation of novel combination therapies for the disease.

Neuroblastoma, a cancer that begins in nerve tissue, is one of the most common pediatric solid tumors, accounting for about 700 new cases per year in the United States. The tumors are usually diagnosed in children younger than five years old, according to the American Cancer Society.

High-risk neuroblastoma is the most dangerous form of this cancer and is often distinguished by the overexpression of the MYCN protein. There are no drugs that are currently approved to treat MYCN-amplified disease, which represents about one-fourth of all neuroblastomas and has a survival rate below 50 percent.

Many cancers are caused by changes in a person's DNA, but it is becoming more evident that changes in a person's epigenome are also responsible for the development of many cancers, specifically pediatric cancers like neuroblastoma. The epigenome is essentially the chemical command center that tells individual genes what to do. Epigenetic drugs target the epigenome and are currently in high demand by many pharmaceutical companies.

A new study, led by Anthony Faber, Ph.D., member of the Developmental Therapeutics research program at VCU Massey Cancer Center, found that a novel epigenetic drug known as a H3K27me demethylase inhibitor can be used in combination with an existing drug called venetoclax to more effectively kill high-risk neuroblastoma cells.

"This research demonstrates one of the first examples of how epigenetic inhibitors and B-cell lymphoma 2 (BCL-2) inhibitors can be rationally combined. This is particularly exciting because BCL-2 inhibitors are already approved by the U.S. Food and Drug Administration," Faber said, adding that BCL-2 is a primary protein involved in the regulation of cell death (apoptosis).

H3K27me refers to a modification (methylation) on a specific group of proteins called histones; histone methylation leads to decreased expression of genes. A demethlyase is a protein that can slow or stop the course of histone methylation.

Faber's research, recently published in Science Translational Medicine, showed that H3K27me demethylase inhibition increases H3K27me to initiate cell differentiation, a natural biological process where cells evolve into more specialized cells. One of the primary characteristics of high-risk neuroblastoma is that the cells resist differentiation and therefore cannot mature normally.

"Pro-differentiation drugs have long been used as part of treatment for high-risk neuroblastoma. We believe this is a really interesting finding because it demonstrates that differentiation problems involve errant histone demethylation. As a result, a normally growing cell is likely stopped in its tracks, essentially getting stuck before it can differentiate. This interruption provides a dangerous window of time for the cell to become cancerous before the body can naturally clear it," said Faber, who is also a Harrison Endowed Scholar in Cancer Research at Massey and an assistant professor in oral and craniofacial biology at the Philips Institute for Oral Health Research at the VCU School of Dentistry. "Moreover, the fact that this demethylation error can be targeted and readily reversed long after the cancer grows was somewhat surprising to us, and we think it is a critical insight into how we can potentially treat high-risk neuroblastoma."

In addition to reversing neuroblastoma cells' inability to differentiate, H3K27me demethylase inhibitors were found to instigate cellular stress. This stress forced the neuroblastoma cells to become much more malleable and therefore more vulnerable to venetoclax, a BCL-2 inhibitor.

Faber had previously shown that venetoclax was individually successful in the treatment of neuroblastoma, specifically high-risk tumors characterized by the overexpression of MYCN. The new study suggests that combining venetoclax with the new epigenetic drug may be even more effective.

"H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce anti-neuroblastoma activity," Faber said.

Looking forward, Faber said that he and his research team will continue to collaborate with AbbVie Inc., the pharmaceutical company responsible for manufacturing venetoclax, to transition the combination of venetoclax and epigenetic drugs into clinical trials for neuroblastoma.
-end-
Faber collaborated on this research with Jennifer Koblinski, Ph.D., member of the Cancer Molecular Genetics research program at Massey and assistant professor in the Department of Pathology at the VCU School of Medicine; Madhu Gowda, M.D., pediatric hematologist-oncologist at Massey and Children's Hospital of Richmond at VCU and assistant professor in the VCU Department of Pediatrics; Daniel Heisey, Jungoh Ham, Konstantinos Floros, Krista Powell, Maninderjit Ghotra, Marissa Calbert, Richard Kurupi and Timothy Lochmann of the VCU School of Dentistry and Massey; Mikhail Dozmorov, Ph.D., member of Massey's Cancer Molecular Genetics research program and assistant professor in the VCU Department of Biostatistics; Andrew Souers, Ph.D., of AbbVie; C. Patrick Reynolds, M.D., Ph.D., of the Texas Tech Cancer Center; and Cyril Benes, Ph.D., and Patricia Greninger of Harvard Medical School.

Virginia Commonwealth University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.