Nav: Home

Neuroscientists map brain's response to cold touch

June 18, 2018

Carnegie Mellon University neuroscientists have mapped the feeling of cool touch to the brain's insula in a mouse model. The findings, published in the June 15 issue of Journal of Comparative Neurology, provide an experimental model that will advance research into conditions like pain and hypersensitivity to cold and help researchers to continue to unravel the multifaceted ways touch is represented in the brain.

"Touch is, by nature, multi-modal. When you pick something up, it can be warm, smooth and heavy all at once. Your brain divides that touch into all of these different percepts. Understanding how it does this can show us how the brain adapts and learns in response to touch and how changes in these pathways can cause pain and disease," said Alison Barth, professor of biological sciences in the Mellon College of Science and member of the joint Carnegie Mellon/University of Pittsburgh Center for the Basis of Neural Cognition.

Touch is a complex sense made up of different components like temperature, texture, weight and pressure -- for example, the smooth and heavy feel of a cold can of soda. Each of these tactile components can be represented in different parts of the brain, and parallel signals from the soda can will activate neurons in multiple areas of the brain, making it difficult to understand how any one of them is represented. Thermal sensation is particularly important, as these neural pathways are thought to overlap with pain, and chronic pain disorders often are associated with abnormal temperature sensitivity.

Although brain maps for touch sensation have been identified in humans, it has been an open question whether other animals share the same organization, a critical question that would enable new therapies to be developed and tested in animal models of disease. For example, reactions to pain and cold temperatures are seen in the insula in the human cerebral cortex. Researchers believed that the rodent insula was far less complex, and reactions to these stimuli wouldn't be observed in the same place as those found in the human brain.

In the current experiment, the Carnegie Mellon researchers looked to establish what part of the mouse brain responded to cool touch. Cold is unique in that only one receptor, TrpM8, responds to cool thermal sensation. Using both cool touch and also exposure to menthol, the researchers were able to show that the feeling of cold was represented in the rodent insula in striking correspondence with the area of the brain activated in humans. Critically, this region was not activated in mice lacking the TrpM8 receptor, indicating that it was highly specific to cool exposure.

The researchers also found that they could trigger the TrpM8 receptors using inhaled menthol and see the same activation in the insula, providing an even more robust way to study this component of touch.
-end-
Co-authors of the study include Patrick Beukema, Katherine L. Cecil, Elena Peterson, Victor R. Mann, Megumi Matsushita, Yoshio Takashima and Saket Navlakha.

The research was funded by the National Institutes of Health (NS086117).

Carnegie Mellon University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".