Nav: Home

Bees love blue fluorescent light, and not just any wavelength will do

June 18, 2018

CORVALLIS, Ore. - Researchers at Oregon State University have learned that a specific wavelength range of blue fluorescent light set bees abuzz.

The research is important because bees have a nearly $15 billion dollar impact on the U.S. economy - almost 100 commercial crops would vanish without bees to transfer the pollen grains needed for reproduction.

"The blue fluorescence just triggered a crazy response in the bees, told them they must go to it," said the study's corresponding author, Oksana Ostroverkhova. "It's not just their vision, it's something behavioral that drives them."

The findings are a powerful tool for assessing and manipulating bee populations - such as, for example, if a farmer needed to attract large numbers of bees for a couple of weeks to get his or her crop pollinated.

"Blue is broad enough wavelength-wise that we needed to figure out if it mattered to the bees if the light emitted by the sunlight-illuminated trap was more toward the purple end or the green end, and yes, it mattered," Ostroverkhova said. "What's also important is now we've created traps ourselves using stage lighting filters and fluorescent paint - we're not just reliant on whatever traps come in a box. We've learned how to use commercially available materials to create something that's very deployable."

Fluorescent light is what's seen when a fluorescent substance absorbs ultraviolet rays or some other type of lower-wavelength radiation and then immediately emits it as higher-wavelength visible light - think about a poster whose ink glows when hit by the UV rays of a blacklight.

Like humans, bees have "trichromatic" vision: They have three types of photoreceptors in their eyes.

Both people and bees have blue and green receptors, but the third type for people is red while the third kind for bees is ultraviolet - electromagnetic energy of a lower wavelength that's just outside the range of human vision.

Flowers' vibrant colors and patterns - some of them detectable only with UV sight - are a way of helping pollinators like bees find nectar, a sugar-rich fluid produced by plants. Bees get energy from nectar and protein from pollen, and in the process of seeking food they transfer pollen from a flower's male anther to its female stigma.

Building on her earlier research, Ostroverkhova, a physicist in OSU's College of Science, set out to determine if green fluorescence, like blue, was attractive to bees. She also wanted to learn whether all wavelengths of blue fluorescence were equally attractive, or if the drawing power tended toward the green or violet edge of the blue range.

In field conditions that provided the opportunity to use wild bees of a variety of species - most bee-vision studies have been done in labs and used captive-reared honeybees - Ostroverkhova designed a collection of bee traps - some non-fluorescent, others fluorescent via sunlight - that her entomology collaborators set up in the field.

Under varying conditions with a diverse set of landscape background colors, blue fluorescent traps proved the most popular by a landslide.

Researchers examined responses to traps designed to selectively stimulate either the blue or the green photoreceptor using sunlight-induced fluorescence with wavelengths of 420 to 480 nanometers and 510 to 540 nanometers, respectively.

They found out that selective excitation of the green photoreceptor type was not attractive, in contrast to that of the blue.

"And when we selectively highlighted the blue photoreceptor type, we learned the bees preferred blue fluorescence in the 430- to 480-nanometer range over that in the 400-420 region," Ostroverkhova said.
-end-
Findings were recently published in the Journal of Comparative Physiology A. The Agricultural Research Foundation and OSU supported this research.

Oregon State University

Related Bees Articles:

Neonicotinoids: Despite EU moratorium, bees still at risk
Since 2013, a European Union moratorium has restricted the application of three neonicotinoids to crops that attract bees because of the harmful effects they are deemed to have on these insects.
Bees 'surf' atop water
Ever see a bee stuck in a pool? He's surfing to escape.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
The secret to better berries? Wild bees
New research shows wild bees are essential for producing larger and better blueberry yields - with plumper, faster-ripening berries.
How do flying bees make perfect turns?
Bees adjust their speed to keep turning forces constant, new research from the Queensland Brain Institute, The University of Queensland shows.
Bees on the brink
Using an innovative robotic platform to observe bees' behavior, Harvard researchers showed that, following exposure to neonicotinoid pesticides -- the most commonly-used class of pesticides in agriculture -- bees spent less time nursing larvae and were less social that other bees.
More Bees News and Bees Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab