Nav: Home

New evidence supports the presence of microbes in the placenta

June 18, 2019

Researchers at Baylor College of Medicine previously found evidence that the placenta harbors a sparse but still present community of microorganisms, which they and other researchers speculate may contribute to key functions in pregnancy, including immunity.

"There has been some debate about our and others' findings in the placenta. Because it is a sparse, or low biomass, community, it is a fair question to ask how much of what we identify as the microbiome is actually bacteria and how much is potentially environmental contamination, or maternal blood in the placenta," said senior author Dr. Kjersti Aagaard, professor and the Henry and Emma Meyer Chair of obstetrics and gynecology at Baylor.

Visual confirmation

"Previously, bacteria were found using metagenomics or microbiome sequencing, and now we have confirmed that signal based on our ability to label the bacterial RNA with a florescent 'tag' and actually see them," said Dr. Maxim Seferovic, instructor in obstetrics and gynecology at Baylor and lead author in the study. "We leveraged a powerful new imaging technology to add greater specificity in the signal of bacterial RNA, which helped us to see bacteria within the microarchitecture of the placental tissue."

Researchers examined microbes in term and preterm gestations using a signal amplified 16S universal in situ hybridization probe designed for bacterial rRNA, along with several other histologic methods. Seferovic said the study was carefully designed to control for contamination as best as possible, so that these sparse bacteria could be accurately attributed to their location in the placenta.

"We did not see quantitative or numerical differences between preterm or full-term births, nor did we see them localizing to different substrata. But we do see differences in what genera of bacteria are there in preterm or full term, and this supported our and other's past findings as well," said Aagaard.

A sparse community

Seferovic said the study was designed to determine if past studies were in fact accurate and truly did look at a low biomass community of microbes that could be reliably distinguished from environmental contamination. This work, when combined with that of several other labs, should give researchers confidence that not only can they sequence these microbes but also that they can see the bacteria in very predictable locations in different placentas.

Seferovic and Aagaard suggest that this boosts their team's and others' confidence that they can begin to look more toward the role of microbes in the intrauterine environment in shaping the developing immune system in the fetus, and what role things like the mom's diet or preterm birth may play in that development.

"At some point we all acquire trillions of bacteria in our bodies that we do not reject with an immune inflammatory response. We are speculating that these low biomass communities may play a key role in shaping the developing fetal immune system to help educate it on which microbes may be beneficial and which might not," Aagaard said.

Both Aagaard and Seferovic agree that there is still a lot of work ahead to be done in this exciting area of the developing microbiome and microbiome science. It is their hope that the techniques and tools developed for this study will lend a hand to other researchers similarly working in challenging low biomass communities.
-end-
Read the complete report in the American Journal of Obstetrics & Gynecology.

Others who took part in the study include Dr. Ryan M. Pace, Dr. Matthew Carroll, Benjamin Belfort, Angela M. Major, Dr. Derrick M. Chu, Dr. Diana A. Racusin, Dr. Eumenia C. C. Castro, Dr. Kenneth L. Muldrew and Dr. James Versalovic, all with Baylor College of Medicine. Aagaard also is professor in the Departments of Molecular and Human Genetics, Molecular and Cellular Biology, and Molecular Physiology and Biophysics.

Funding is from the March of Dimes Preterm Birth Research Initiative, the Burroughs Welcome Fund Preterm Birth Initiative and the NIH (1R01NR014792, 6R01DK089201, R01HD091731, NICHD N01-HD-80020 NCS Formative Research.

Baylor College of Medicine

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.