Microfluidics device captures circulating cancer cell clusters

June 18, 2019

WASHINGTON, D.C., June 18, 2019 -- Cancer touches nearly everyone in one way or another, and regrettably, it will claim another 600,000 lives in the U.S. in 2019, according to the American Cancer Society. Researchers from San Diego State University, TumorGen MDx Inc., and Sanford Burnham Prebys Medical Discovery Institute set out to explore a seemingly basic question: What is it about cancer that kills?

The answer is, about 90% of cancer deaths are due to metastases, when tumors spread to other vital organs. How does cancer metastasize? After an exhaustive search of the scientific literature, the researchers realized that it's not individual cells but rather distinct clusters of cancer cells that circulate and metastasize to other organs.

As the group reports in AIP Advances, from AIP Publishing, this caused them to question -- if these cell clusters are the "root causes of cancer," why isn't more research being devoted to gaining a better understanding of circulating cancer cell clusters?

"The reason for such little research activity is the overwhelming difficulty of capturing these extremely rare metastatic cancer cell clusters from a patient's blood sample," said Peter Teriete, one of the authors and a research assistant professor at Sanford Burnham Prebys Medical Discovery Institute. "But we realized that if we're ever going to understand the complex process of cancer metastasis, we'd need to develop a tool to easily find these clusters."

To do this, the researchers first identified the basic requirements essential to collecting useful information from isolated cancer cell clusters. It involves a sample size large enough to likely contain appreciable numbers of cancer cell clusters (about 10 milliliters of whole blood), as well as using whole blood to preserve rare circulating clusters. Whole blood, however, requires channel-coating procedures that reduce nonspecific binding properties to prevent biofouling. And the device channel dimensions must be of a suitable size to accommodate single cells and cancer cell clusters of varying diameters.

"Our device's channel design had to generate microfluidic flow characteristics suitable to facilitate cell capture via antibodies within the coated channels," Teriete explained. "So we introduced microfeatures -- herringbone recesses -- to produce the desired functionality. We also developed a unique alginate hydrogel coating that can be readily decorated with antibodies or other biomolecules. By connecting bioengineering with materials science and basic cancer biology, we were able to develop a device and prove that it performs as desired."

The group's microfluidic device brings a new therapeutic strategy to the fight against cancer metastasis. Capturing viable circulating cancer stem cell clusters directly from cancer patients is a novel approach for the development of new anti-metastatic drug therapies.

"Drug development that specifically targets distant metastases has been greatly restricted due to the lack of adequate tools that can readily access the metastatic cells responsible for cancer's dissemination," said Teriete. "Our microfluidic device will provide cancer researchers with actual human cancer cell clusters, so they can begin to understand the critical mechanisms involved with metastasis and develop highly effective drugs that ultimately can save more cancer patients' lives."
The article, "Design and production of a novel microfluidic device for the capture and isolation of circulating tumor cell clusters," is authored by Sebastian W. Shaner, Jeffrey K. Allen, Martina Felderman, Evan T. Pasko, Carina D. Wimer, Nicholas D.P Cosford, Samuel Kassegne and Peter Teriete. It appears in AIP Advances on June 18, 2019 (DOI: 10.1063/1.5084736) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5084736.


AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences. See http://aipadvances.aip.org.

American Institute of Physics

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.