Antioxidant agent may prevent chronic kidney disease and Parkinson's disease

June 18, 2020

Osaka, Japan - Oxidative stress is the result of reactive oxygen species (ROS) generation, and can be damaging to cells and tissues. In a new study, researchers from Osaka University developed a novel dietary silicon (Si)-based antioxidant agent that suppressed the development and progression of kidney failure and Parkinson's disease in rodents.

ROS are generated as a result of metabolism and the immune response, but also during certain disease processes, contributing to continued tissue damage. Chronic kidney disease and Parkinson's disease are among those diseases that have been shown to result from oxidative stress. Although ROS encompass several different molecules, not all ROS are alike. While Hydroxyl (OH) radicals are highly damaging to tissues through their effect on cells and DNA, others, like hydrogen peroxide and superoxide anions, are important components of the normal immune response.

"Eliminating only hydroxyl radicals is important to avoid disrupting normal physiological processes," says lead author of the study Yuki Kobayashi. "Previous attempts to do so, like taking in hydrogen-rich water or breathing in hydrogen-containing air, have shown limited results. We wanted to develop a new dietary agent that efficiently enables the elimination of damaging hydroxyl radicals."

To achieve their goal, the researchers produced a novel Si-based agent from Si powder. Because the agent is taken by mouth, the researchers first evaluated the efficacy of the agent in an environment similar to that in bowels, that is, a pH of 8.3 and at 36°C. 1g of the new agent was able to generate 400 ml of hydrogen in 24 hours, which is the equivalent of drinking 22 liters of hydrogen-rich water. The new agent thus enabled the continuous production of high amounts of an OH-eliminating molecule.

But was it sufficient to protect tissues from being damaged by ROS? To address this question, the researchers turned to animal models of chronic kidney disease and Parkinson's disease. When they fed rats who had 5/6 of their kidneys removed with the Si-based agent, kidney function was preserved and tissue levels of oxidative stress as well as inflammation were significantly lowered, as compared with those of control animals. Similarly, when they fed animals with Parkinson's disease with the Si-based agent, degeneration of neurons responsible for the disease was significantly attenuated.

"These are striking results that show that our Si-based agent is effective in preventing the progression of chronic kidney disease and Parkinson's disease in well-established animal models," says corresponding author Shoichi Shimada. "Our findings could provide new insights into the clinical management of patients with these diseases, for which currently no curative approach exists."
The article, "Renoprotective and neuroprotective effects of enteric hydrogen generation from Si-based agent," was published in Scientific Reports at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.


Osaka University

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to