Nav: Home

Nanoparticle for overcoming leukemia treatment resistance

June 18, 2020

UConn associate professor of pharmaceutics Xiuling Lu, along with professor of chemistry Rajeswari M. Kasi, was part of a team that recently published a paper in Nature Cell Biology finding a commonly used chemotherapy drug may be repurposed as a treatment for resurgent or chemotherapy-resistant leukemia.

One of the largest problems with cancer treatment is the development of resistance to anticancer therapies. Few FDA-approved products directly target leukemia stem cells, which cause treatment-resistant relapses. The only known method to combat their presence is stem cell transplantation.

Leukemia presents unique treatment challenges due to the nature of this form of cancer. The disease affects bone marrow, which produces blood cells. Leukemia is a cancer of the early blood-forming cells, or stem cells. Most often, leukemia is a cancer of the white blood cells. The first step of treatment is to use chemotherapy to kill the cancerous white blood cells, but if the leukemia stem cells in the bone marrow persist, the cancer may relapse in a therapy-resistant form.

Fifteen to 20% of child and up to two thirds of adult leukemia patients experience relapse. Adults who relapse face a less-than 30% five-year survival rate. For children the five-year survival rate after relapse is around two thirds. When relapse occurs, chemotherapy does not improve the prognosis for these patients. There is a critical need for scientists to develop a therapy that can more effectively target chemotherapy-resistant cells.

There are two cellular pathways, Wnt-β-catenin and PI3K-Akt, which play a key role in stem cell regulation and tumor regenesis. Cooperative activation of the Wnt- β-catenin and PI3K-Akt pathways drives self-renewal of cells that results in leukemic transformation, giving rise to cancer relapse. Previous studies have worked on targeting elements of these pathways individually, which has had limited success and often results in the growth of chemo-resistant clones.

The researchers screened hundreds of drugs to find one that may inhibit this interaction. They identified a commonly used chemotherapy drug, doxorubicin as the most viable target. While this drug is highly toxic and usually used with caution in clinical settings, the team found when used in multiple, low doses, it disrupts the Wnt-β-catenin and PI3K-Akt pathways' interaction, while potentially reducing toxicity.

Lu's lab contributed a nanoparticle which allowed the drug to be injected safely and released sustainably over time, a key to the experiment's success. The nanoparticle encasing doxorubicin enables slow release of the drug to the bone marrow to reduce the Akt-activated β-catenin levels in chemo-resistant leukemic stem cells and reduce the tumorigenic activity. In low doses, doxorubicin stimulated the immune system while typical clinical doses are immunosuppressive, inhibiting healthy immune cells.

Lu is the CEO of Nami Therapeutics, a startup which designs nanoparticles for drug delivery in a variety of clinical contexts including cancer treatment and vaccine delivery.

Because of its rate of drug release, Lu's patented nanoparticle was more effective than both a solution of the pure drug and a liposomal doxorubicin, the only commercially available version of a nanoparticle carrying doxorubicin.

"It's exciting that the whole research team identified this new mechanism to effectively inhibit leukemia stem cells," Lu says. "We are happy to see that our proprietary nanoparticle delivery system has such potential to help patients."

By using low, but more sustained, doses of this drug, leukemia-initiating activity of cancerous stem cells was effectively inhibited.

The researchers demonstrated clinical relevance by transplanting patient leukemic cells into mice and observing that low-dose doxorubicin's ability to disrupt these cells. Patient sample transplants with therapy-resistant leukemia stem cells rapidly developed leukemia. But the low-dose doxorubicin nanoparticle treatment improved survival by reducing the presence of leukemia stem cells.

Lu says the next steps for this research is to further validate the now-patented method and nanoparticle and eventually bring it into clinical usage. Lu and her collaborator, Rajeswari Kasi, also have two pending patents on copolymer-nanoparticles for drug delivery and methods for treating chemo-resistant cancer-initiating cells.
-end-


University of Connecticut

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.