Achievement isn't why more men are majoring in physics, engineering and computer science

June 18, 2020

While some STEM majors have a one-to-one male-to-female ratio, physics, engineering and computer science (PECS) majors consistently have some of the largest gender imbalances among U.S. college majors - with about four men to every woman in the major. In a new study published today in the peer-reviewed research journal, Science, NYU researchers find that this disparity is not caused by higher math or science achievement among men. On the contrary, the scholars found that men with very low high-school GPAs in math and science and very low SAT math scores were choosing these math-intensive majors just as often as women with much higher math and science achievement.

"Physics, engineering and computer science fields are differentially attracting and retaining lower-achieving males, resulting in women being underrepresented in these majors but having higher demonstrated STEM competence and academic achievement," said Joseph R. Cimpian, lead researcher and associate professor of economics and education policy at NYU Steinhardt.

Cimpian and his colleagues analyzed data from almost 6,000 U.S. high school students over seven years - from the start of high school into the students' junior year of college. When the researchers ranked students by their high-school math and science achievement, they noticed that male students in the 1st percentile were majoring in PECS at the same rate as females in the 80th percentile, demonstrating a stark contrast between the high academic achievement of the female students majoring in PECS compared to their male peers.

The researchers also reviewed the data for students who did not intend to major in PECS fields, but later decided to. They found that the lowest achieving male student was as least as likely to join one of these majors as the highest achieving female student.

The rich dataset the researchers used was collected by the U.S. Department of Education, and it contained measures of many factors previously linked to the gender gap in STEM. The NYU team tested whether an extensive set of factors could explain the gender gap equally well among high, average, and low achieving students. While the gender gap in PECS among the highest achievers could be explained by other factors in the data, such as a student's prior career aspirations and confidence in their science abilities, these same factors could not explain the higher rates of low-achieving men in these fields.

This new work suggests that interventions to improve gender equity need to become more nuanced with respect to student achievement.

"Our results suggest that boosting STEM confidence and earlier career aspirations might raise the numbers of high-achieving women in PECS, but the same kinds of interventions are less likely to work for average and lower achieving girls, and that something beyond all these student factors is drawing low-achieving men to these fields," said Cimpian.

"This new evidence, combined with emerging literature on male-favoring cultures that deter women in PECS, suggests that efforts to dismantle barriers to women in these fields would raise overall quality of students," continued Cimpian.
In addition to Cimpian, his colleagues Taek H. Kim of NYU Steinhardt and Zachary T. McDermott of NYU Wagner School of Public Service contributed to the research. The study was funded through an Institute of Education Sciences (IES) Predoctoral Interdisciplinary Research Training Grant to New York University.

About the Steinhardt School of Culture, Education, and Human Development

Located in the heart of New York City's Greenwich Village, NYU's Steinhardt School of Culture, Education and Human Development prepares students for careers in the arts, education, health, media and psychology. Since its founding in 1890, the Steinhardt School's mission has been to expand human capacity through public service, global collaboration, research, scholarship, and practice. To learn more about NYU Steinhardt, visit

New York University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to