Uncovering the genetic basis of hermaphroditism in grapes, the trait that allowed domestication

June 18, 2020

Plant experts at UC Davis have defined the genetic basis of sex determination in grapevines, one of the oldest and most valuable crops worldwide.

In new research published in the journal Nature Communications, viticulture and enology professor Dario Cantu and Mélanie Massonnet, lead author and postdoctoral researcher in Cantu's lab, propose a novel model of sex evolution before and during grapevine domestication nearly 8,000 years ago. Their work could have broad application in breeding grapes and other plant species.

All wild species of grapes (genus Vitus) are dioecious, which means that male and female flowers are located on separate plants. Male individuals bear flowers with reduced pistils and female vines have flowers with reflexed anthers and stamens that produce sterile pollen grains.

Just one Vitis species, the cultivated grapevine Vitis vinifera ssp. vinifera, has reverted to hermaphroditism, leading to the advent of vines bearing perfect flowers with both functional pistils and stamens.

"It has always been a major challenge to identify the genes and mutations that lead to plant sexual differentiation," Cantu noted. "We show how the pivotal domestication trait of hermaphroditic flowers in grapevine is likely determined by the action of two separate genes contained within a sex-linked locus."

Comparing sex determination genes in wild and domestic grapes

To unveil the molecular mechanisms associated with sex determination, researchers constructed the genomes of two female and three male wild grapes, and five hermaphroditic domesticated accessions, including the chromosome-scale genome of Cabernet Sauvignon (the most widely planted wine grape cultivar in the world). They compared the structure of the sex determination locus, its sequence and genes between male, female and hermaphrodite individuals.

"The unprecedented amount of data generated here supports a model for sex determination in which recessive male- and dominant female-sterility mutations in ancestral hermaphrodite individuals gave rise to dioecious extant wild species, and a rare recombination event during domestication that led to hermaphroditism in cultivated grapevines," Cantu said. "From our findings, we propose that female individuals arise from a recessive deletion in a gene necessary for pollen germination, while male vines emerge from a dominant mutation in a second gene, resulting in female sterility."

The findings and the methods applied are particularly valuable for grape breeding efforts and to advance the understanding of sex determination in grapes and other plant species.
The Cantu lab team worked in collaboration with UC Irvine Professor Brandon Gaut and his team. The project was funded by the National Science Foundation, the E.&J. Gallo Winery, J. Lohr Vineyards and Wines, the Chilean Economic Development Agency, Viña San Pedro, Viña Concha y Toro and the Louis P. Martini Endowment in Viticulture.

University of California - Davis

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.