Targeting stem cells: The path to curing poor-prognosis leukaemia

June 18, 2020

Researchers at Children's Cancer Institute have discovered what could prove a new and improved way to treat the poor-prognosis blood cancer, acute myeloid leukaemia or AML.

Unlike acute lymphoblastic leukaemia (ALL), the most common childhood cancer, AML is notoriously difficult to cure, often proving resistant to standard treatments. The researchers have been investigating what they believe to be the root cause of treatment resistance, leukaemia stem cells, and have now hit upon a new therapeutic approach that works by targeting these cells.

Stem cells are special cells that are not only capable of giving rise to different types of cells, but also of copying themselves indefinitely in a process known as self-renewal. If stem cells in the blood becomes cancerous, they can multiply out of control, causing leukaemia. And while ever leukaemia stem cells remain in a child's body, that child remains at risk of relapse.

"Leukaemia stem cells have their own protective mechanisms that make them resistant to anticancer drugs", explains lead researcher Dr Jenny Wang, head of the Cancer and Stem Cell Biology Group. "After chemotherapy, if even one leukaemic stem cell is left alive, it can regenerate and the disease can come back."

The new treatment approach, published this month in one of the world's leading cancer research journals, Cancer Cell, works by disrupting the ability of leukaemia stem cells to self-renew. Specifically, it uses an antibody treatment (anti-RSPO3) to interfere with the interaction between two key molecules thought to drive the self-renewal process.

Using highly specialised laboratory models ? mice growing cancer cells taken directly from patients with AML ? the researchers found that the treatment not only markedly reduced the amount of leukaemia, but also prevented new leukaemia cells from growing. Importantly, it did not harm healthy stem cells, which children treated for AML need to reconstitute their blood system after treatment.

Best of all, the new targeted therapy has the potential to replace intensive chemotherapy - the cause of serious long-term side effects. Following more preclinical studies, the researchers hope to see the therapy progress to clinical trial and prove effective in children with AML.

"This disease is very tough, and the survival rate is low," says Dr Wang. "We really need to find a cure."
-end-
About Children's Cancer Institute

Originally founded by two fathers of children with cancer in 1976, Children's Cancer Institute is the only independent medical research institute in Australia wholly dedicated to research into the causes, prevention and cure of childhood cancer. Forty years on, our vision is to save the lives of all children with cancer and improve their long-term health, through research. The Institute has grown to now employ over 300 researchers, operational staff and students, and has established a national and international reputation for scientific excellence. Our focus is on translational research, and we have an integrated team of laboratory researchers and clinician scientists who work together in partnership to discover new treatments which can be progressed from the lab bench to the beds of children on wards in our hospitals as quickly as possible. These new treatments are specifically targeting childhood cancers, so we can develop safer and more effective drugs and drug combinations that will minimise side-effects and ultimately give children with cancer the best chance of a cure with the highest possible quality of life. More at http://www.ccia.org.au

Contact:
Ash Addison - ash@uptowncomms.com
0418 274 428

Children's Cancer Institute Australia

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.