Pulsating chemistry

June 19, 2003

Researchers at the Fritz-Haber Institute in Berlin have recently discovered chemical-thermal-mechanical oscillations that show, indirectly, the rate of certain reactions.

The pattern formation of a catalytic surface reaction is influenced by the temperature at which the reaction takes place. If the temperature of the surface is changed, then the course of the chemical processes changes as well. In extreme cases this change can lead to front formation, i.e. patterns, or, for example, to the overheating of the catalysts. Scientists in the research group led by Professors Harm Hinrich Rotermund and Gerhard Ertl at the Fritz-Haber Institute in Berlin have recently begun to study these processes.
In particular, they have investigated more precisely the
influence of heat production during catalytic surface reactions between oxygen and carbon monoxide and pattern formations using an ultra-thin platinum catalyst. During the investigation it was established that, like a beating heart, the platinum foil began to pulsate mechanically during the reactions. With mathematical models and computer simulations the scientists were able to show that the elastic deformations of the foil were in fact due to the oscillation of the chemical reaction itself. This effect can now be used to precisely measure the amount of heat created during these chemical reactions (Science, 20 June, 2003).

Initially, the goal of the researchers (G. Ertl, H.H. Rotermund M. Schunack, Jp. Wolff) was merely investigating the influence of the reaction-induced heat on the pattern formation (spiral waves, standing waves, solitons, etc.) in catalytic surface reactions. The heating of a platinum catalyst during the creation of carbon dioxide is hardly measurable under normal conditions. This means working at a constant temperature with very small pressures (on the order of one-millionth of the normal air pressure) of oxygen and carbon monoxide, the experimental gases which are used, and a sample thickness of approximately 1 mm. In order to be able to fully investigate the temperature effects in spite of the difficulties in measuring, an ultra-thin (0.0002 Millimeter) platinum foil was used as the catalyst. The thickness of the foil is crucial because the heat from the reaction can not be conducted away or neutralized by the metal.

The heat pattern of the reaction is observed using a highly sensitive infrared camera. The resulting pictures clearly showed how, during the reaction, the temperature of the ultra-thin foil fluctuated by several degrees Celsius. And, with only a slightly rise in pressure, temperature oscillations of as much as 20 to 30 degrees were observed. The infrared pictures looked surprisingly like the entire foil catalyst was mechanically oscillating and folds were appearing. An explanation finally came with the use of a normal camera: Every three to four seconds the self-supporting foil was drastically deformed. Two pictures of these oscillations are shown in the figure below.


The underlying reasons for the oscillations remained, however, unclear. The temperature of the thin foil was obviously increased from the heat of the reaction. This rise in temperature then accelerated the reaction, causing the temperature to go up more. At some point it would be expected that no further increase in the temperature would be found because the additional heat from the reaction would equal the heat lost via radiation. What is observed, however, is a sudden and rapid decrease of the temperature, after which the foil becomes once again smooth.

While Prof. I.G. Kevrekidis visited the Fritz-Haber-Institut extensive discussions lead to further investigations of this phenomenon. Additional experiments were carried out in which the foil was not heated through the chemical reaction. Instead, a focused laser beam was used to achieve this purpose. Through this process it was seen that the appearance of the folds in the foil was a direct result of the increase of the foil's temperature. In order to more fully investigate these mechanical oscillations intensive mathematical simulations were done by two research groups at Princeton University (I. G. Kevrekidis, P. Holmes, J. E. Cisternas). The results of these calculations showed that the oscillations could only appear for a certain restricted set of parameters. For a fixed ratio between the thickness of the foil and its diameter only a small range of reaction parameters like temperature and partial pressure of the gases would produce the observed effects. In other words, the experimenters just had a stroke of luck!

The Princeton modeling revealed a delicate interplay between thermo-chemistry and thermo-mechanics. Transitions from strongly buckled to smooth states of the foil are mainly due to the oscillations of the chemical reaction itself: the creation of large amounts of carbon dioxide leads to the heating and folding of the foil. If the temperature of the catalyst rises, however, more of the carbon monoxide becomes oxidized until it is fully consumed in the immediate surrounding region. Thereafter the production of the carbon dioxide falls off leading to the contraction of the foil. Because of the slow rate of reaction, the lack of carbon monoxide can be replenished by the arrival of additional gas. Therefore, the entire process begins anew.

At the California Institute of Technology (F. Cirak, M. Ortiz) and at Rutgers University (A. M. Cuitiño ) further sophisticated computer calculations on the elastic deformations of an ultra-thin foil were undertaken. The resulting pictures were quite realistic. The fact that the foil folds very irregularly (first occurring when the plate holding the foil experiences a temperature difference of only one degree) is caused by the way in which it was manufactured. The thin foil is stretched over an approximately four-millimeter hole in a platinum holder and attaches itself to the platinum through adhesion alone. Although the foil over the hole is self-supporting, it is not stretched in a uniform manner. This tension works, at first, to stabilize the smooth form of the foil, so that with small temperature increases no folds appear. The computer simulations showed that if the samples were perfectly symmetrical, they would begin to bend with the smallest temperature increases. If the temperature continued to rise the bending would become more extreme, leading finally to a round hump in the sample.

Chemical-mechanical oscillations, although not including heat-coupling through chemical reactions, were first described 130 years ago in the first years of non-linear dynamics by Gabriel Lippmann in the "Annalen der Physik (Annals of Physics)." Then, for the first time, an iron nail in an aqueous oxidizing solution was brought into contact with a drop of mercury resting in a Petri dish, whereupon the mercury drop would begin to pulsate. Because of the resulting heart-shape of the oscillations, the phenomenon came to be called the "Quicksilver Heart."

The researchers at the Fritz-Haber-Institute have already shown that the mechanical deformation of the catalytic foil can, in principle, also be used for direct measurement of the energy released by a chemical reaction. With a laser they heated a platinum foil just enough that, although no folds appeared, the foil immediately deformed when only one layer of carbon dioxide or oxygen particles reacted with their respective partner. These deformations can be combined with simple optical methods in order to develop ultra-sensitive instruments for the measurement of rates of chemical reactions.
Image A shows the catalytic foil in a relatively smooth state, image B shows a state with many folds. Photo: Fritz-Haber-Institut

Original Publication:
Fehmi Cirak, Jaime E. Cisternas, Alberto M. Cuitiño, Gerhard Ertl, Philip Holmes, Ioannis G. Kevrekidis, Michael Ortiz, Harm Hinrich Rotermund, Michael Schunack, Janpeter Wolff.

Oscillatory Thermo-Mechanical Instability of an Ultrathin Catalyst Science, 300, 1932-1935, 2003 Published 20th of June

You can find further information here:
Prof. Dr. Harm Hinrich Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6, 14195 Berlin (Dahlem) Germany
E-Mail: rotermun@fhi-berlin.mpg.de
Tel.: 049-030-8413-5129
Fax: 049-030-8413-5106
Internet: http://w3.rz-berlin.mpg.de/~rotermun


Related Chemical Reactions Articles from Brightsurf:

Shedding light on how urban grime affects chemical reactions in cities
Many city surfaces are coated with a layer of soot, pollutants, metals, organic compounds and other molecules known as ''urban grime.'' Chemical reactions that occur in this complex milieu can affect air and water quality.

Seeing chemical reactions with music
Audible sound enables chemical coloring and the coexistence of different chemical reactions in a solution.

Nanocatalysts that remotely control chemical reactions inside living cells
POSTECH professor In Su Lee's research team develops a magnetic field-induced heating 'hollow nanoreactors'.

New NMR method enables monitoring of chemical reactions in metal containers
Scientists have developed a new method of observing chemical reactions in metal containers.

Levitating droplets allow scientists to perform 'touchless' chemical reactions
Levitation has long been a staple of magic tricks and movies.

Predicting unpredictable reactions
New research from the University of Pittsburgh's Swanson School of Engineering, in collaboration with the Laboratory of Catalysis and Catalytic Processes (Department of Energy) at Politecnico di Milano in Milan, Italy, advances the field of computational catalysis by paving the way for the simulation of realistic catalysts under reaction conditions.

First-time direct proof of chemical reactions in particulates
Researchers at the Paul Scherrer Institute PSI have developed a new method to analyse particulate matter more precisely than ever before.

Finding the source of chemical reactions
In a collaborative project with MIT and other universities, scientists at Argonne National Laboratory have experimentally detected the fleeting transition state that occurs at the origin of a chemical reaction.

Accelerating chemical reactions without direct contact with a catalyst
Northwestern University researchers demonstrate a chemical reaction produced through an intermediary created by a separate chemical reaction, findings that could impact environmental remediation and fuel production.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Read More: Chemical Reactions News and Chemical Reactions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.