Nav: Home

Danitza Nébor's personal mission to find a cure for sickle-cell disease

June 19, 2015

For Jackson Laboratory postdoctoral associate Danitza Nébor, Ph.D., studying sickle-cell disease isn't just a research project: It's a personal mission.

The native of Guadaloupe, a French overseas territory in the southern Caribbean Sea, grew up knowing she carried one copy of the genetic mutation that causes the disease; two copies (one from each parent) would have made her a patient. She also knew she wanted to work someday for the French national institute of health and medical research, known as Inserm, which works with the Centre Caribeen de la Drépanocytose, the sickle-cell disease center in her home country.

"At first I thought I was going to be a lawyer, to become an advocate for public policy supporting the center," Nébor says. "Instead I went into science to study sickle-cell disease. I am motivated by the friends and family members who are affected by the condition."

Sickle-cell disease is named for abnormal, sickle-shaped hemoglobin cells. Hemoglobin is the oxygen-carrying protein in red blood cells oxygen. The condition can cause a wide range of serious health problems, including acute pain, severe anemia, vulnerability to infection, stroke and damage to the eyes, heart, lungs and kidneys.

The disease primarily strikes people of African origin. Worldwide about 300,000 babies are born each year with the disease; in the U.S., it's about one in every 365 African-American children. (Nébor herself is expecting her first baby, and as her husband is not a sickle-cell carrier she is confident that the baby will be born without the disease.)

After Nébor earned her undergraduate and master's degrees at the University of Poitiers in France, she earned a postgraduate degree at the University of Paris VII, and completed her Ph.D. through combined work at the University of French West Indies, the University of Paris VII and Inserm.

Nébor came to the laboratory of Professor Luanne Peters, Ph.D., in 2012. Peters recalls that Nébor's cover letter stood out from the hundreds of other applicants': "She opened with, 'I am Danitza Nébor,' instead of the kind of long, formal introduction most applicants use. I thought, this is a person who knows who she is and where she wants to go."

And normally, foreign candidates for postdoctoral positions conduct their first meeting online via Skype or videoconference. "But not Danitza--she was determined to come to Bar Harbor to meet me in person. It took her about 36 hours to get here!"

In the Peters lab, Nébor searches for genetic modifiers of the expression of sickle-cell anemia--in other words, the gene variants that reduce the severity of the disease in patients with two copies of the sickle-cell gene.

"We have a mouse model that does not actually have sickle-cell anemia, but what it does have is a high level of embryonic hemoglobin in adult mice," Nébor explains. "Normally embryonic hemoglobin is expressed only in the embryo and is not present in the adult. For decades now we have known that humans with sickle-cell disease that have a high level of fetal globin do much better than patients without this high level.

"So our goal is to try to understand why our mouse model has this high expression of embryonic hemoglobin, and that might help us to find new drug targets to make the lives of people with sickle-cell disease easier."

Sickle-cell disease is a major health problem today, but the genetic variation that causes the disease actually has a benign side. "If you look at a map of where the sickle cell gene is expressed--mainly in Africa--and where malaria is expressed, they overlap. People who carry one copy of the gene, known as sickle-cell trait carriers, are somewhat protected from malaria. But as the trait spread through the population, unfortunately the chances increased of having a baby with two copies of the gene."

In December Nébor learned that she was one of 15 scientists to receive an American Society of Hematology award for basic research. The award provides $100,000 over a two-year period. "When I opened the letter announcing I had won the award," Nébor relates, "first I cried, and then I ran to Luanne's office to tell her the news."

Besides the financial support, Nébor says, "this is really a recognition of the work we are doing here in Luanne's lab."

Peters says, "Danitza won't mention this, but it's quite remarkable for someone who does research in human populations to recognize and appreciate the power of the mouse, and to make such a huge turnabout in her career to come here to learn about mouse genetics.

"To say nothing of her living arrangements, from the tropics to the Arctic," she jokes.

"I decided to work on sickle cell disease because of my personal connections," Nébor says. "The gene is pretty frequent in the population of Guadaloupe; the people are French but most of our ancestors came from Africa. I hope my work here at The Jackson Laboratory will someday help people in my country and around the world."

Jackson Laboratory

Related Genetic Variation Articles:

Individual genetic variation in immune system may affect severity of COVID-19
Genetic variability in the human immune system may affect susceptibility to, and severity of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19).
Genetic variation not an obstacle to gene drive strategy to control mosquitoes
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 'gene drive' technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.
Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.
A genetic tug-of-war between the sexes begets variation
In species with sexual reproduction, no two individuals are alike and scientists have long struggled to understand why there is so much genetic variation.
Scientists identify genetic variation linked to severity of ALS
A discovery made several years ago in a lab researching asthma at Wake Forest School of Medicine may now have implications for the treatment of amyotrophic lateral sclerosis (ALS), a disease with no known cure and only two FDA-approved drugs to treat its progression and severity.
Genetic variation contributes to individual differences in pleasure
Differences in how our brains respond when we're anticipating a financial reward are due, in part, to genetic differences, according to research with identical and fraternal twins published in Psychological Science, a journal of the Association for Psychological Science.
Genetic variation linked to response to anxiety could inform personalised therapies
A new study in marmoset monkeys suggests that individual variation in genes alters our ability to regulate emotions, providing new insights that could help in the development of personalised therapies to tackle anxiety and depression.
Old for new, using ancient genetic variation to supercharge wheat
A global, collaborative effort led by the Earlham Institute, UK and CIMMYT, Mexico sheds light on the genetic basis of biomass accumulation and efficiency in use of light, both of which are bottlenecks in yield improvement in wheat.
How hot spots of genetic variation evolved in human DNA
New research investigates hot spots of genetic variation within the human genome, examining the sections of our DNA that are most likely to differ significantly from one person to another.
Broad genetic variation on the Pontic-Caspian Steppe
The genetic variation within the Scythian nomad group is so broad that it must be explained with the group assimilating people it came in contact with.
More Genetic Variation News and Genetic Variation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at