Nav: Home

Artificial synapse rivals biological ones in energy consumption

June 19, 2016

Creation of an artificial intelligence system that fully emulates the functions of a human brain has long been a dream of scientists. A brain has many superior functions as compared with super computers, even though it has light weight, small volume, and consumes extremely low energy. This is required to construct an artificial neural network, in which a huge amount (1014) of synapses is needed.

Most recently, great efforts have been made to realize synaptic functions in single electronic devices, such as using resistive random access memory (RRAM), phase change memory (PCM), conductive bridges, and synaptic transistors. Artificial synapses based on highly aligned nanostructures are still desired for the construction of a highly-integrated artificial neural network.

Prof. Tae-Woo Lee, research professor Wentao Xu, and Dr. Sung-Yong Min with the Dept. of Materials Science and Engineering at POSTECH have succeeded in fabricating an organic nanofiber (ONF) electronic device that emulates not only the important working principles and energy consumption of biological synapses but also the morphology. They recently published their findings in Science Advances, a new sister journal of Science.

The morphology of ONFs is very similar to that of nerve fibers, which form crisscrossing grids to enable the high memory density of a human brain. Especially, based on the e-Nanowire printing technique, highly-aligned ONFs can be massively produced with precise control over alignment and dimension. This morphology potentially enables the future construction of high-density memory of a neuromorphic system.

Important working principles of a biological synapse have been emulated, such as paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), spike-timing dependent plasticity (STDP), and spike-rate dependent plasticity (SRDP). Most amazingly, energy consumption of the device can be reduced to a femtojoule level per synaptic event, which is a value magnitudes lower than previous reports. It rivals that of a biological synapse. In addition, the organic artificial synapse devices not only provide a new research direction in neuromorphic electronics but even open a new era of organic electronics.

This technology will lead to the leap of brain-inspired electronics in both memory density and energy consumption aspects. The artificial synapse developed by Prof. Lee's research team will provide important potential applications to neuromorphic computing systems and artificial intelligence systems for autonomous cars (or self-driving cars), analysis of big data, cognitive systems, robot control, medical diagnosis, stock trading analysis, remote sensing, and other smart human-interactive systems and machines in the future.
-end-
This research was supported by the Pioneer Research Center Program (2012-0009460) and Center for Advanced Soft-Electronics as Global Frontier Project (2014M3A6A5060947) funded by the Ministry of Science, ICT and Future Planning.

Pohang University of Science & Technology (POSTECH)

Related Human Brain Articles:

New computing system takes its cues from human brain
A team of researchers at Georgia Institute of Technology and University of Notre Dame has created a new computing system that aims to tackle one of computing's hardest problems in a fraction of the time.
Fructose is generated in the human brain
Fructose, a form of sugar linked to obesity and diabetes, is converted in the human brain from glucose, according to a new Yale study.
Is the human brain hardwired to appreciate poetry?
In 1932 T.S. Eliot famously argued, 'Genuine poetry can communicate before it is understood.' But can we really appreciate the musical sound of poetry independent of its literary meaning?
More human-like model of Alzheimer's better mirrors tangles in the brain
A new animal model developed at Penn Medicine using tau tangles isolated from the brains of Alzheimer's patients rather than synthetic tau tangles paints a closer picture of the tau pathology in the AD brain.
Large human brain evolved as a result of 'sizing each other up'
Humans have evolved a disproportionately large brain as a result of sizing each other up in large cooperative social groups, researchers have proposed.
Human brain clocks exposed: Effects of circadian clocks and sleep loss vary across brain regions, new study finds
In a new study published today in the journal Science, a team of researchers from the University of Liege and the University of Surrey have scanned the brains of 33 participants across such a two-day sleep deprivation period and following recovery sleep.
Secrets of the human brain unlocked
Human intelligence is being defined and measured for the first time ever, by researchers at the University of Warwick.
Human Brain Project's research platforms released
Public Release of Platforms Will Help Advance Collaborative Research in Neuroscience, Medicine, and Computing.
New research replicates a folding human brain in 3-D
Understanding how the brain folds could help unlock the inner workings of the brain but the process has long remained a mystery.
New theory linking brain activity to brain shape could throw light on human consciousness
UNSW Australia scientists have shown that complex human brain activity is governed by the same simple universal rule of nature that can explain other phenomena such as the beautiful sound of a finely crafted violin or the spots on a leopard.

Related Human Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".