Nav: Home

Diagnostics of genetic cardiac diseases using stem cell-derived cardiomyocytes

June 19, 2018

A new study by Professors Martti Juhola and Katriina Aalto-Setälä of the University of Tampere in Finland demonstrates that with the use of artificial intelligence and machine learning, it is possible not only to accurately sort sick cardiac cell cultures from healthy ones, but also to differentiate between genetic cardiac diseases.

iPSC-derived cardiomyocytes can be derived from a blood sample or a skin biopsy. These cells are currently used to understand the pathophysiology of different diseases and to identify new potential drugs for various diseases.

Machine learning and artificial intelligence have greatly improved in recent years. Scientists at the University of Tampere have now combined stem cell technology and artificial intelligence to study beating cardiomyocytes in cell cultures. The beating behavior of the cells was analyzed using calcium signals. Calcium is essential for cardiomyocytes to beat, and the beating can be monitored by using fluorescent labels.

In the study, the cardiomyocytes were derived either from patients with a genetic arrhythmia (CPVT), long QT syndrome (LQTS), or hypertrophic cardiomyopathy (HCM), or from healthy individuals. The beatings of single cardiomyocytes were recorded and the analysis software was taught what diseases they represented. The program then learned to separate the different groups and to identify specific features in the beating behavior of each cell.

The software is now capable of identifying whether signals are from cells derived from an individual carrying a disease-causing mutation or from a healthy individual. This is very impressive, but the biggest surprise was that the program could also tell the difference between the diseases.

This important observation reveals that iPSC-derived cells and artificial intelligence have the potential to be used in diagnostics. Currently, genetic diseases are mainly diagnosed by DNA analysis, but in many cases the results do not reveal whether the DNA alteration is the true cause of the disease or whether it is just an innocent variation. This new finding demonstrates that uniting artificial intelligence and machine learning can help in such situations. The combination of technologies could also be used in cases of unspecific but severe cardiac findings to identify the specific disease causing the symptoms.
-end-
See the article in Scientific Reports: http://www.nature.com/articles/s41598-018-27695-5

University of Tampere

Related Artificial Intelligence Articles:

Hacking the human brain -- lab-made synapses for artificial intelligence
One of the greatest challenges facing artificial intelligence development is understanding the human brain and figuring out how to mimic it.
Artificial intelligence predicts patient lifespans
A computer's ability to predict a patient's lifespan simply by looking at images of their organs is a step closer to becoming a reality, thanks to new research led by the University of Adelaide.
Building a better 'bot': Artificial intelligence helps human groups
Artificial intelligence doesn't have to be super-sophisticated to make a difference in people's lives, according to a new Yale University study.
Artificial intelligence may help diagnose tuberculosis in remote areas
Researchers are training artificial intelligence models to identify tuberculosis (TB) on chest X-rays, which may help screening and evaluation efforts in TB-prevalent areas with limited access to radiologists, according to a new study.
Biased bots: Human prejudices sneak into artificial intelligence systems
In debates over the future of artificial intelligence, many experts think of the new systems as coldly logical and objectively rational.
Canada funds $125 million Pan-Canadian Artificial Intelligence Strategy
The Government of Canada is funding a Pan-Canadian Artificial Intelligence Strategy for research and talent that will cement Canada's position as a world leader in AI.
Artificial intelligence and robots to make offshore windfarms safer and cheaper
The University of Manchester is leading a consortium to investigate advanced technologies, including robotics and artificial intelligence, for the operation and maintenance of offshore windfarms.
Artificial intelligence virtual consultant helps deliver better patient care
Interventional radiologists at the University of California at Los Angeles (UCLA) are using technology found in self-driving cars to power a machine learning application that helps guide patients' interventional radiology care, according to research presented today at the Society of Interventional Radiology's 2017 Annual Scientific Meeting.
Artificial intelligence in quantum systems, too
The UPV/EHU's Department of Physical Chemistry has conducted world-class research in physics and quantum computation.
Artificial intelligence enters the nutraceutical industry
Life Extension (LE) launched a new line of nutraceuticals called GEROPROTECTTM, and the first product in the series called Ageless Cell combines some of the natural compounds that were shortlisted by Insilico Medicine's algorithms and are generally recognized as safe (GRAS).

Related Artificial Intelligence Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"