Nav: Home

Spintronics: Controlling magnetic spin with electric fields

June 19, 2018

Spintronics is a field of physics that studies the spin of electrons, an intrinsic type of magnetism that many elementary particles have. The field of spintronics has given rise to technological concepts of "spintronic devices", which would run on electron spins, rather than their charge, used by traditional electronics.

In order to build programmable spintronic devices we first need to be able to manipulate spins in certain materials. So far, this has been done with magnetic fields, which are not easy to integrate into everyday applications.

In a new set of experiments, an international team of physicists led by Hugo Dil at EPFL have now demonstrated the ability to control what they call "the spin landscape" using electric fields. They accomplished this in a new class of materials based on germanium telluride (GeTe), which is the simplest ferroelectric material operating at room temperature.

The scientists used a technique called spin- and angle-resolved photoemission spectroscopy (SARPES), which can measure the spin of electrons, and has been perfected by Dil's lab. By combining SARPES with the possibility to apply an electric field, the physicists demonstrate electrostatic spin manipulation in ferroelectric α-GeTe and multiferroic (GeMn)Te.

In addition, the scientists were able to follow the spins' switching pathway in detail. In (GeMn)Te, the perpendicular spin component switches due to electric-field-induced magnetization reversal. This provides firm evidence of magneto-electric coupling, which opens up the possibility of programmable semiconductor based spintronics.

"Our previous work showed that magnetic fields can control spins in these materials," says Dil. "And now we've shown that spin manipulation is also possible using electric fields. Our experimental findings open up a promising path to only use electric fields in a spintronics device, strongly reducing the energy consumption."

J. Krempasky, S. Muff, J. Minár, N. Pilet, M. Fanciulli, A.P. Weber, E.B. Guedes, M. Caputo, E. Mueller, V.V. Volobuiev, M. Gmitra, C. A. F. Vaz, V. Scagnoli, G. Springholz, J. H. Dil. Operando imaging of all-electric spin texture manipulation in ferroelectric and multiferroic Rashba semiconductors. Phys. Rev. X 8, 021067. 18 June 2018. DOI:10.1103/PhysRevX.8.021067

Other contributors

Paul Scherrer Institut
New Technologies-Research Center University of West Bohemia
Kharkiv Polytechnic Institute
University of Regensburg
Pavol Jozef & Šafárik University
ETH Zurich
Johannes Kepler Universität

Ecole Polytechnique Fédérale de Lausanne

Related Magnetic Fields Articles:

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.
Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.
A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.
Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.
Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.
How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.
Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.
Controlling artificial cilia with magnetic fields and light
Researchers have made artificial cilia, or hair-like structures, that can bend into new shapes in response to a magnetic field, then return to their original shape when exposed to the proper light source.
Are gamma-ray bursts powered by a star's collapsing magnetic fields?
In its final moments of life, a distant massive star releases an intense burst of high-energy gamma radiation - a Gamma Ray Burst (GRB) - the brightest sources of energy in the universe, detectable to humans through powerful telescopes.
Not everything is ferromagnetic in high magnetic fields
High magnetic fields have a potential to modify the microscopic arrangement of magnetic moments because they overcome interactions existing in zero field.
More Magnetic Fields News and Magnetic Fields Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at