Nav: Home

Scientists reveal how gut microbes 'recover' after antibiotic treatment

June 19, 2018

New insight on how antibiotics affect the gut microbiome - the community of microbes that live inside us - has been published in the journal eLife.

The study in mice hints at new methods for maintaining a healthy microbiome or controlling invasion from harmful, disease-causing bacteria.

"The gut microbiome consists of a community of microbes which, when disturbed, exposes the host to risks such as infection," says first author Aspen Reese, who led the study while a PhD student at Duke University, North Carolina, US. "While it was already known that antibiotics kill or prevent the growth of bacteria in the gut, it was not clear exactly how and when those changes affect the gut environment."

To learn more about this question, Reese and her team sought to understand what ecological changes happen to microbiota during and after treatment with broad-spectrum antibiotics - treatments that act against a wide range of harmful bacteria.

The scientists began by administering antibiotics to mice over five days to broadly inhibit their gut bacteria. They found that the gut's redox potential - a measure of the chemical environment including an estimate of how easily organisms are able to respire within it - increased under antibiotic treatment. While evidence suggested that these redox shifts were associated with the host immune system, the shifts also occurred when gut microbial communities were treated with antibiotics in an artificial gut that had no immune system.

"We also saw that as antibiotics removed bacteria and reduced their metabolic rates in the mouse gut, there was an increase in oxidising agents called electron acceptors," Reese explains. "This new environmental state meant that the microbial community which recolonised after treatment looked very different from the original community."

The bacteria that appeared immediately following treatment, including some potentially harmful species, were able to take advantage of the electron acceptors to grow quickly. As they grew, they used up the excess resources, causing the gut environment to return to its normal state. However, this did not guarantee recovery of the original microbial community.

"Antibiotics may drive some microbe species extinct in a gut community, so new microbial immigrants from outside the mouse - in this case from an untreated mouse in the same cage - were likely needed to return the microbiota to its original state," says senior author Lawrence David, Assistant Professor of Molecular Genetics and Microbiology at Duke University.

Together, these results suggest new ecological models for how antibiotics reshape the gut microbiome and how redox shifts could be associated with intestinal disease, with changes in electron acceptor availability setting the stage for post-antibiotic recolonisation of gut bacteria.

"In the future, our work could help inform the development of drugs that either include chemical alterations of redox potential, or that introduce competitors for excess electron acceptors, to help treat microbial disorders or prevent antibiotic-associated infections," Reese concludes.
-end-
Reference

The paper 'Antibiotic induced changes in the microbiota disrupt redox dynamics in the gut' can be freely accessed online at https://doi.org/10.7554/eLife.35987. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contacts

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

Karl Bates, Director of Research Communications
Duke University
karl.bates@duke.edu
+1 919 681 8054

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org.

eLife

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.