Nav: Home

Cell type and environment influence protein turnover in the brain

June 19, 2018

Scientists have revealed that protein molecules in the brain are broken down and replaced at different rates, depending on where in the brain they are.

The study, published in eLife, provides essential insights into how the components of different cells in the brain are altered. These kinds of alterations may be important in our abilities to learn and form memories, especially as protein turnover plays a crucial role in these processes.

Proteins are the mechanical engines of the cell, carrying out many essential functions. The 'turnover' of proteins in a cell is balanced by how much protein is manufactured and how much is broken down. Under normal conditions, this turnover is continuous, and ensures that damaged proteins can be removed and replaced by new ones. It also gives a cell the ability to change its entire proteome - all the proteins it contains - to respond quickly to internal and external signals, such as hormones or electrical impulses.

Protein turnover ensures that synapses - the structures that allow an electrical or chemical impulse from one nerve cell to another - remain flexible. This phenomenon, called 'synaptic plasticity', is important for maintaining the brain's ability to create new nerve networks, which in turn allows us to create new memories or learn new behaviours and skills.

"It is known that proteins can show very different turnover rates in different tissues or different cell types of the same organism, but little is known about protein turnover rates in different cell types of the brain, and how they affect each other," explains lead author Aline Dörrbaum, graduate student at the Max Planck Institute for Brain Research, Germany.

To address this, the team grew cells from the hippocampus region of the brain and used isotopically labelled amino acids (the building blocks of proteins) to determine the 'half-life' of proteins. This was measured by how quickly the 'heavy'-labelled proteins appeared in the cells as the proteins were made, and how quickly the natural 'light' proteins disappeared as they were broken down. The team obtained half-life measurements for over 5,100 protein groups from different neuronal culture types that contained a mixture of neurons and glia cells (which support and provide insulation between neurons). All samples contained both neurons and glia cells, but in different proportions.

They found the half-lives varied greatly - from less than a day (fast turnover) to more than 20 days (slow turnover) - and that this depended on the location of the protein in the cell. Proteins nearer the surface of the cell, often involved in communication, were shorter-lived and proteins involved in energy metabolism were longer-lived compared to the overall protein population.

Of particular note, the researchers found that an identical protein expressed in glia cells had a much faster turnover rate than when it was expressed in neuron cells. A subset of proteins also had faster or slower turnover rates when there were more glial cells in the environment.

"Our results demonstrate that both the cell-type of origin as well as the nature of the environment outside the cell have powerful influences on protein turnover," concludes senior author Professor Erin Schuman, Director of the Max Planck Institute for Brain Research. "Our next goal is to determine how nerve plasticity regulates and exploits turnover to modify the brain proteomes in response to different stimuli."
-end-
Reference

The paper 'Local and global influences on protein turnover in neurons and glia' can be freely accessed online at https://doi.org/10.7554/eLife.34202. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org.

eLife

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.