Nav: Home

Sodium- and potassium-based batteries hold promise for cheap energy storage

June 19, 2018

From electric cars that travel hundreds of miles on a single charge to chainsaws as mighty as gas-powered versions, new products hit the market each year that take advantage of recent advances in battery technology.

But that growth has led to concerns that the world's supply of lithium, the metal at the heart of many of the new rechargeable batteries, may eventually be depleted.

Now researchers at the Georgia Institute of Technology have found new evidence suggesting that batteries based on sodium and potassium hold promise as a potential alternative to lithium-based batteries.

"One of the biggest obstacles for sodium- and potassium-ion batteries has been that they tend to decay and degrade faster and hold less energy than alternatives," said Matthew McDowell, an assistant professor in the George W. Woodruff School of Mechanical Engineering and the School of Materials Science and Engineering.

"But we've found that's not always the case," he added.

For the study, which was published June 19 in the journal Joule and was sponsored by the National Science Foundation and the U.S. Department of Energy, the research team looked at how three different ions - lithium, sodium, and potassium - reacted with particles of iron sulfide, also called pyrite and fool's gold.

As batteries charge and discharge, ions are constantly reacting with and penetrating the particles that make up the battery electrode. This reaction process causes large volume changes in the electrode's particles, often breaking them up into small pieces. Because sodium and potassium ions are larger than lithium, it's traditionally been thought that they cause more significant degradation when reacting with particles.

In their experiments, the reactions that occur inside a battery were directly observed inside an electron microscope, with the iron sulfide particles playing the role of a battery electrode. The researchers found that iron sulfide was more stable during reaction with sodium and potassium than with lithium, indicating that such a battery based on sodium or potassium could have a much longer life than expected.

The difference between how the different ions reacted was stark visually. When exposed to lithium, iron sulfide particles appeared to almost explode under the electron microscope. On the contrary, the iron sulfide expanded like a balloon when exposed to the sodium and potassium.

"We saw a very robust reaction with no fracture - something that suggests that this material and other materials like it could be used in these novel batteries with greater stability over time," said Matthew Boebinger, a graduate student at Georgia Tech.

The study also casts doubt on the notion that large volume changes that occur during the electrochemical reaction are always a precursor to particle fracture, which causes electrode failure leading to battery degradation.

The researchers suggested that one possible reason for the difference in how the different ions reacted with the iron sulfide is that the lithium was more likely to concentrate its reaction along the particle's sharp cube-like edges, whereas the reaction with sodium and potassium was more diffuse along all of the surface of the iron sulfide particle. As a result, the iron sulfide particle when reacting with sodium and potassium developed a more oval shape with rounded edges.

While there's still more work to be done, the new research findings could help scientists design battery systems that use these types of novel materials.

"Lithium batteries are still the most attractive right now because they have the most energy density - you can pack a lot of energy in that space," McDowell said. "Sodium and potassium batteries at this point don't have more density, but they are based on elements a thousand times more abundant in the earth's crust than lithium. So they could be much cheaper in the future, which is important for large scale energy storage - backup power for homes or the energy grid of the future."
-end-
This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-1652471, DMR-1410936, CMMI-1554393 and ECCS-1542174, as well as the U.S. Department of Energy under Contract No. DE-SC0012704. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

CITATION: Matthew G. Boebinger, David Yeh, Michael Xu, B. Casey Miles, Baolin Wang, Marc Papakyriakou, John A. Lewis, Neha P. Kondekar, Francisco Javier Quintero Cortes, Sooyeon Hwang, Xiahan Sang, Dong Su, Raymond R. Unocic, Shuman Xia, Ting Zhu, and Matthew T. McDowell, "Avoiding Fracture in a Conversion Battery Material through Reaction with Larger Ions," (Joule, June 2018). https://doi.org/10.1016/j.joule.2018.05.015

Georgia Institute of Technology

Related Batteries Articles:

A seaweed derivative could be just what lithium-sulfur batteries need
Lithium-sulfur batteries have great potential as a low-cost, high-energy, energy source for both vehicle and grid applications.
Batteries from scrap metal
Chinese scientists have made good use of waste while finding an innovative solution to a technical problem by transforming rusty stainless steel mesh into electrodes with outstanding electrochemical properties that make them ideal for potassium-ion batteries.
Better cathode materials for lithium-sulphur-batteries
A team at the Helmholtz-Zentrum Berlin (HZB) has for the first time fabricated a nanomaterial made from nanoparticles of a titanium oxide compound (Ti4O7) that is characterized by an extremely large surface area, and tested it as a cathode material in lithium-sulphur batteries.
Bright future for self-charging batteries
Who hasn't lived through the frustrating experience of being without a phone after forgetting to recharge it?
Making batteries from waste glass bottles
Researchers at the University of California, Riverside's Bourns College of Engineering have used waste glass bottles and a low-cost chemical process to create nanosilicon anodes for high-performance lithium-ion batteries.
Batteries -- quick coatings
Scientists at Oak Ridge National Laboratory are using the precision of an electron beam to instantly adhere cathode coatings for lithium-ion batteries -- a leap in efficiency that saves energy, reduces production and capital costs, and eliminates the use of toxic solvents.
Lighter, more efficient, safer lithium-ion batteries
Researchers from Universidad Carlos III de Madrid and the Council for Scientific Research (initialed CSIC in Spanish) have patented a method for making new ceramic electrodes for lithium-ion batteries that are more efficient, cheaper, more resistant and safer than conventional batteries.
Clarifying how lithium ions ferry around in rechargeable batteries
IBS scientists observe the real-time ultrafast bonding of lithium ions with the solvents, in the same process that happens during charging and discharging of lithium batteries, and conclude that a new theory is needed.
A new approach to improving lithium-sulfur batteries
Researchers from the University of Delaware and China's Northwestern Polytechnical University, Shenzhen University and Hong Kong Polytechnic University have demonstrated a new polysulfide entrapping strategy that greatly improves the cycle stability of Li-S batteries.
Looking for the next leap in rechargeable batteries
USC researchers may have just found a solution for one of the biggest stumbling blocks to the next wave of rechargeable batteries -- small enough for cellphones and powerful enough for cars.

Related Batteries Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".