Nav: Home

Rush hour metro crowd governed by people's eagerness to go home

June 19, 2018

Ever found yourself crushed in a metro station at rush hour? The mathematician Carlo Bianca and physicist Caterina Mogno, both from the engineering research lab ECAM-EPMI in Cergy-Pontoise, France, have developed a new model to study the movement of crowds exiting a metro station. In a recent study published in EPJ Plus, they have for the first time employed models typically used to study gases consisting of a large number of molecules that collide at random (known as thermostatted kinetic theory) to study the consequences of the different interactions occurring among pedestrians in a crowd while exiting a metro station.

The authors assume that what motivates pedestrians to leave a metro station can be modelled as an external force that explains the conditions under which they leave due to the crowd pressure. Their model combines aspects representing the interactions between pedestrians and governed by thermostatted kinetic theory with the cooperation between pedestrians as intelligent and self-organised decision-makers, which is governed by game theory.

The model thus depicts what happens to a crowd of pedestrians trying to leave a metro station consisting of different exits at rush hour. Bianca and Mogno seek an approximate solution to the problem by starting from the exact solution of a simpler, related problem. The results show how, as pedestrians try to make their way out of the station, the interaction dynamics among them can in fact be negligible, as they do not influence the flow of pedestrians toward the exit as much as their motivation to leave (the external force) does.

Numerical simulations on the magnitude of the external force explain how internal interactions between pedestrians can be affected by an external force driving them to leave the station. What matters most is that all of the pedestrians are individually in the same hurry to exit the station and get away from the crowd. The latter aspect is gauged by a thermostat modelling the temperature of the molecules in a gas, which represents the individuals in the crowd, who are under a steady level of crowd pressure pushing them toward the exit.
-end-
References:

C. Bianca, C. Mogno (2018), A thermostatted kinetic theory model for event-driven pedestrian dynamics, European Physical Journal Plus 133:213, DOI 10.1140/epjp/i2018-12055-5

Springer

Related Molecules Articles:

Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
Hand-knitted molecules
Molecules are usually formed in reaction vessels or laboratory flasks.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Data storage using individual molecules
Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled.
Small molecules come into focus
Many biologically important small molecules, like hormones and amino acids, are too small to be measured by conventional detection methods.
We now know how RNA molecules are organized in cells
With their new finding, Canadian scientists urge revision of decades-old dogma on protein synthesis
A new way to create molecules for drug development
Chemists at The Ohio State University have developed a new and improved way to generate molecules that can enable the design of new types of synthetic drugs.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Molecules News and Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.