Nav: Home

Rush hour metro crowd governed by people's eagerness to go home

June 19, 2018

Ever found yourself crushed in a metro station at rush hour? The mathematician Carlo Bianca and physicist Caterina Mogno, both from the engineering research lab ECAM-EPMI in Cergy-Pontoise, France, have developed a new model to study the movement of crowds exiting a metro station. In a recent study published in EPJ Plus, they have for the first time employed models typically used to study gases consisting of a large number of molecules that collide at random (known as thermostatted kinetic theory) to study the consequences of the different interactions occurring among pedestrians in a crowd while exiting a metro station.

The authors assume that what motivates pedestrians to leave a metro station can be modelled as an external force that explains the conditions under which they leave due to the crowd pressure. Their model combines aspects representing the interactions between pedestrians and governed by thermostatted kinetic theory with the cooperation between pedestrians as intelligent and self-organised decision-makers, which is governed by game theory.

The model thus depicts what happens to a crowd of pedestrians trying to leave a metro station consisting of different exits at rush hour. Bianca and Mogno seek an approximate solution to the problem by starting from the exact solution of a simpler, related problem. The results show how, as pedestrians try to make their way out of the station, the interaction dynamics among them can in fact be negligible, as they do not influence the flow of pedestrians toward the exit as much as their motivation to leave (the external force) does.

Numerical simulations on the magnitude of the external force explain how internal interactions between pedestrians can be affected by an external force driving them to leave the station. What matters most is that all of the pedestrians are individually in the same hurry to exit the station and get away from the crowd. The latter aspect is gauged by a thermostat modelling the temperature of the molecules in a gas, which represents the individuals in the crowd, who are under a steady level of crowd pressure pushing them toward the exit.
-end-
References:

C. Bianca, C. Mogno (2018), A thermostatted kinetic theory model for event-driven pedestrian dynamics, European Physical Journal Plus 133:213, DOI 10.1140/epjp/i2018-12055-5

Springer

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Molecules: The Elements and the Architecture of Everything
by Theodore Gray (Author), Nick Mann (Photographer)

Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

DMT: The Spirit Molecule: A Doctor's Revolutionary Research into the Biology of Near-Death and Mystical Experiences
by Rick Strassman (Author)

Molecules Of Emotion: The Science Behind Mind-Body Medicine
by Candace B. Pert (Author)

Napoleon's Buttons: How 17 Molecules Changed History
by Penny Le Couteur (Author), Jay Burreson (Author)

The Billion Dollar Molecule: One Company's Quest for the Perfect Drug
by Barry Werth (Author)

The Molecules of Life: Physical and Chemical Principles
by John Kuriyan (Author), Boyana Konforti (Author), David Wemmer (Author)

Taste Buds and Molecules: The Art and Science of Food, Wine, and Flavor
by Francois Chartier (Author)

The Moral Molecule: How Trust Works
by Paul J. Zak (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".