Nav: Home

Creating a new composite fuel for new-generation fast reactors

June 19, 2018

Joint research efforts of a team of scientists at Lobachevsky University of Nizhny Novgorod (UNN) comprising chemists, physicists and engineers are currently focused on solving the problems of handling plutonium and minor actinides (MA) accumulated over many years. To this end, they are studying composite ceramics-ceramics (Cer-Cer) and ceramics-metal (CerMet) materials on the basis of mineral-like compounds (in particular, garnet minerals). Lobachevsky University researchers believe that the optimal solution of the problem is to create high-density ceramic composite inert fuel matrices (IMF) for burning plutonium and transmuting minor actinides.

Ludmila Golovkina, Head of the UNN Solid State Chemistry Laboratory, notes that along with all their advantages from the point of view of applications in nuclear power engineering, mineral-like garnet-based ceramics have some drawbacks, including their low thermal conductivity and low fracture toughness. The former drawback may lead to additional temperature increase from radiogenic heat which results in lower chemical stability. The latter induces microfracturing, which creates open surfaces and reduces chemical (hydrolytic) stability of ceramics.

"In this regard, the idea of creating "ceramics-ceramics" and "ceramics-metal" composites seems very promising. With the right choice of components in such a material, the second phase (ceramic or metallic) could provide both an increase in thermal conductivity and an increase in fracture toughness," Ludmila Golovkina explains.

Within the framework of the Russian Science Foundation grant No.16-13-10464 "Promising ceramic mineral-like materials with improved and adjustable service characteristics: development, synthesis, study", a team of researchers under the supervision of Dr. Albina Orlova, professor of the Department of Solid State Chemistry and lead researcher of the UNN Physics and Technology Research Institute, has produced and studied fine-grained composites based on Y2.5Nd0.5Al5O12 garnet with additives including highly heat-conductive metals (nickel, molybdenum, tungsten) and silicon carbide having a low neutron capture cross section. To simulate the presence of americium and curium in the ceramic composition, they used neodymium that was incorporated in the yttrium-aluminum garnet.

According to Professor Albina Orlova, a new chemical and metallurgical method was developed and applied to deposit thin metal layers on the surface of synthesized submicron garnet particles, while high-speed spark plasma sintering was used to sinter the powdered materials and to produce the ceramics. It is a promising way for producing ceramics and composites by heating powders at a high rate, passing high-power (up to 5000 A) millisecond DC pulses and simultaneously applying the required pressure.

"Lobachevsky University scientists have studied in detail the features of high-speed multistage sintering of such composites. It was shown that the process of sintering composites consists of two stages: at the first stage, the densification process is associated with the plastic flow of the material, and at the second stage, it occurs due to the diffusion in the garnet crystal lattice," Albina Orlova notes.

As a result of the research done by Prof. Orlova's team, "garnet-metal" and "garnet-silicon carbide" ceramic compositions with a high relative density (92-99% of the theoretical value for "garnet-metal" and 98-99% for "garnet - SiC" composites) were obtained.

"Thus, we can ensure high hardness and fracture toughness of composites, as well as their high thermophysical properties, in particular, thermal conductivity in the temperature range close to the temperatures that these materials will experience when used in new fast neutron reactors. All other things being equal, this will reduce the probability and intensity of destruction of the ceramics in the process of reactor operation", - Albina Orlova concludes.

The results of these studies were published in the journals Materials Research Bulletin (2018, v.103, p.211-215) and Materials Chemistry and Physics (2018, v. 214, p. 516-526).

The next step in this work will be to study the new composites' radiation stability and their resistance to thermal shock. Thus, the research team will come even closer to developing a fundamentally new method for producing fuel for fast neutron reactors and to solving the problem of immobilization of highly radioactive waste components by isolating them securely from the biosphere.

Lobachevsky University

Related Thermal Conductivity Articles:

Understanding river thermal landscapes
The BioScience Talks podcast features discussions of topical issues related to the biological sciences.
Granular material conductivity increases in mysterious ways under pressure
In a recent study published in EPJ E, a French team of physicists made systematic measurements of the electrical resistance -- which is inversely related to conductivity -- of metallic, oxidized granular materials in a single 1-D layer and in 3-D, under compression.
Understanding a river's 'thermal landscape' may be the key to saving it
Inexpensive sensor technologies have enabled an explosion in the availability of river temperature data and in statistical models for understanding them.
Reducing down to one-third of thermal resistance by WOW technology for 3-D DRAM application
Researchers at Tokyo institute of Technology presented a design guide for reducing 30 percent of thermal resistance for three-dimensional stacked devices compared with the conventional ICs using solder bump joint structure.
Building a market for renewable thermal technologies
A Yale-led analysis concludes that renewable thermal technologies have significant market potential in the state if supported by appropriate public policy and financing tools.
The secrets of vibration-enhanced conductivity in graphene
Graphene still holds some unexplained qualities, which are important in connection with electronic applications where high-conductivity matters.
New study will help find the best locations for thermal power stations in Iceland
A new research article, with lead authors from the University of Gothenburg, gives indications of the best places in Iceland to build thermal power stations.
Tortoise electrons trying to catch up with hare photons give graphene its conductivity
How electrons interact with other electrons at quantum scale in graphene affects how quickly they travel in the material, leading to its high conductivity.
Researchers find way to tune thermal conductivity of 2-D materials
Researchers have found an unexpected way to control the thermal conductivity of two-dimensional (2-D) materials, which will allow electronics designers to dissipate heat in electronic devices that use these materials.
New optical material offers unprecedented control of light and thermal radiation
A team led by Nanfang Yu, assistant professor of applied physics at Columbia Engineering, has discovered a new phase-transition optical material -- samarium nickelate -- and demonstrated novel devices that dynamically control light over a much broader wavelength range and with larger modulation amplitude than what has currently been possible.

Related Thermal Conductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".