Nav: Home

Could this material enable autonomous vehicles to come to market sooner?

June 19, 2018

One of the leading challenges for autonomous vehicles is to ensure that they can detect and sense objects--even through dense fog. Compared to the current visible light-based cameras, infrared cameras can offer much better visibility through the fog, smoke or tiny particles that can scatter the visible light.

Within the air, infrared light --within a specific range called mid-wave infrared-- scatter much less compared to other visible or other infrared light waves. Infrared cameras can also see more effectively in the dark, when there is no visible light. However, currently the deployment of infrared cameras is limited by their heavy cost and scarcity of effective materials. This is where materials, which possess unique optical properties in the infrared and can be scalable, might make a difference in providing better object identification in several technologies including autonomous vehicles.

A new material developed by scientists at the USC Viterbi School of Engineering and the University of Wisconsin along with researchers from Air Force Research Laboratories, University of Missouri, and J.A. Woollam Co. Inc, might show promise for such infrared detection applications as autonomous vehicles, emergency services and even manufacturing.

The research group of Jayakanth Ravichandran, an assistant professor of materials sciences at the USC Viterbi School of Engineering has been studying a new class of materials called chalcogenide perovskites. Among these materials is Barium titanium sulfide (BTS), a material rediscovered and prepared in large crystal form by Shanyuan Niu, a doctoral candidate in the Materials Science program at the USC Mork Family Department of Chemical Engineering and Materials Science. Ravichandran's research group collaborated with the research groups of Mikhail Kats, an assistant professor of electrical and computer engineering at University of Wisconsin-Madison and Han Wang, an assistant professor of electrical engineering and electrophysics in USC's Ming Hsieh Department of Electrical Engineering to study how infrared light interacts with this material. These researchers discovered that this material interacted differently with light in two different directions.

"This is a significant breakthrough, which can affect many infrared applications," says Ravichandran.

This direction dependent interaction with light is characterized by an optical property called birefringence. In simple terms, birefringence can be viewed as light moving at different speeds in two directions in a material. Much like sunglasses with polarized lenses block glare, BTS has the ability to block or slow down light depending on the direction in which it travels in the material. The researchers maintain that their material, barium titanium sulfide, has the highest birefringence among known crystals.

"The birefringence is larger than that of any known solid material, and it has low losses across the important long-wave infrared spectrum," says Kats.

How BTS could improve infrared vision:

The BTS material can be used to construct a sensor to filter out certain polarizations of light to achieve better contrast of the image. It could also help filter light coming from different directions to enable sensing of a remote object's features. This could be particularly important for improving infrared vision used in autonomous vehicles, which need to see the entire landscape around them even in low visibility conditions.

"The hope is that in the future, a BTS-enhanced sensor in a car would function as retinas do to the human body," says Niu.

The authors believe these infrared-responsive materials can extend human perception. Beyond autonomous vehicles, there are other possible heat sensing or temperature measurement applications. One application could be in the creation of imaging tools used by firefighters to generate an instant temperature map outside a burning building to assess where a fire is spreading and where emergency responders need to rescue trapped individuals.

At present, the cost of infrared equipment makes it too expensive for all fire stations to have such equipment. BTS, which is made of elements readily abundant in earth crust--could make infrared equipment more affordable and effective. In addition, such materials are safer for the user and the environment, as well as easier to dispose of than the materials that are used now, which contain hazardous elements such as mercury and cadmium.

These materials could also be useful in devices that sense harmful molecules, gases, even biological systems. The applications range from heat sensing, pollution monitoring to medicine.

"To date, the constraint of existing mid-IR materials is a big bottleneck to translate many of these technologies," says USC's Wang.

The researchers hope that intense research in this area will make several of these technologies a reality in the near future.

The research on BTS is documented in "Giant optical anisotropy in a quasi-1D crystal" featured in Nature Photonics.
-end-


University of Southern California

Related Engineering Articles:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity
Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.