Nav: Home

New model for gauging ice sheet movement may improve sea-level-rise predictions

June 19, 2018

LAWRENCE -- A just-published paper in Science changes the formula scientists should use when estimating the speed of huge ice sheets in Greenland and Antarctica that flow into the ocean and drive mounting sea levels around the globe.

The change in the formula for predicting ice flow -- or basal sliding -- reduces "the largest uncertainty" in predicting future sea-level rise. It was prompted by analyzing data from 140 glaciers in Greenland.

University of Kansas researchers Leigh Stearns, associate professor of geology and research scientist at the Center for Remote Sensing of Ice Sheets, and Cornelis van der Veen, professor of geography, discovered friction -- or "basal drag" -- between ice sheets and the hard bed underneath has no influence on how fast glaciers flow.

This finding throws out a notion that has colored estimates of glacier speed for decades.

"Basal sliding is one of the most important things we try to measure in glaciology and one of the hardest to measure," said Stearns. "Our paper says the parameter most used in ice sheet models is incorrect -- the Weertman model -- developed in the 1950s based on a theoretical framework that how fast ice moves at the bed is based on friction and the amount of water at the bed. We're saying that friction doesn't matter."

Instead, the KU researchers found subglacial water pressure, the water pressure between the bottom of the ice sheet and the hard bed underneath, controls the speed of the ice flow.

Part of their work included an analysis of decades-old studies of water pressure underneath mountain glaciers, which "have been largely overlooked by the glaciological community." Stearns and van der Veen paired the mountain-glacier results with the recent observations on surface velocity from the outlet glaciers in Greenland.

"We can calculate the friction at the bed of glaciers by investigating spatial patterns of surface velocity. Surprisingly, we found that the two are not at all correlated. Pressure is different and much harder to measure. We know what the pressure at the terminus is because the glacier is floating there, and we can calculate up-flow pressure based on ice thickness. It's not a perfect estimate, but it gives us a good first approximation. If we could, we'd love to put boreholes into all 140 glaciers around Greenland and measure water pressure directly, but that's not practical."

Stearns and van der Veen found the relationship between subglacial water pressure in Greenland's outlet glaciers lined up with measurements taken from the mountain glaciers in the 1980s, implying the processes for sliding variations are also similar.

"The simplified sliding relation can appropriately reproduce spatial patterns of ice velocity," the KU researchers said. "This is in stark contrast to current modeling techniques, which involve tuning the sliding parameter in order to match observed velocities."

"Models that are used to predict sea-level change are inexact because we can't directly measure processes happening at the bed," Stearns said. "Current models using Weertman solutions require tuning to match observations. It's an imperfect way of doing what has to be done to come up with estimates. It has a lot of knobs. With this new parameter, we're trying to reduce the amount of tuning needed."

Even though "people were waiting for someone to challenge Weertman, people knew it needed to be improved," Stearns said she worried about causing upset with scientists who'd relied on the older model for earlier research.

"I was a little nervous," she said. "I was anxious because it negates what people have been using for a while. It calls into question the model they're using. But the reaction has been positive so far. People have been encouraging of a new systematic approach to a sliding law."

Stearns has too much humility to dub her new formula the "Stearns model," even though it improves and replaces the less accurate "Weertman model," named after the scientist who devised it.

She stressed her revised formula is part of the self-correcting nature of scientific inquiry and shouldn't shed doubt on climate science or the inexorable rise of sea levels around the world as more ice from Greenland and Antarctica melts into the ocean.

"I hope it helps people believe in our projections," she said. "This is based more on physical processes and less on things you have to tune for any reason. Anything that's improving how we model ice sheets in the future is a good thing -- how are ice sheets responding to climate change? With these model improvements, we're getting a step closer to a really accurate understanding."
-end-


University of Kansas

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.