Nav: Home

New model for gauging ice sheet movement may improve sea-level-rise predictions

June 19, 2018

LAWRENCE -- A just-published paper in Science changes the formula scientists should use when estimating the speed of huge ice sheets in Greenland and Antarctica that flow into the ocean and drive mounting sea levels around the globe.

The change in the formula for predicting ice flow -- or basal sliding -- reduces "the largest uncertainty" in predicting future sea-level rise. It was prompted by analyzing data from 140 glaciers in Greenland.

University of Kansas researchers Leigh Stearns, associate professor of geology and research scientist at the Center for Remote Sensing of Ice Sheets, and Cornelis van der Veen, professor of geography, discovered friction -- or "basal drag" -- between ice sheets and the hard bed underneath has no influence on how fast glaciers flow.

This finding throws out a notion that has colored estimates of glacier speed for decades.

"Basal sliding is one of the most important things we try to measure in glaciology and one of the hardest to measure," said Stearns. "Our paper says the parameter most used in ice sheet models is incorrect -- the Weertman model -- developed in the 1950s based on a theoretical framework that how fast ice moves at the bed is based on friction and the amount of water at the bed. We're saying that friction doesn't matter."

Instead, the KU researchers found subglacial water pressure, the water pressure between the bottom of the ice sheet and the hard bed underneath, controls the speed of the ice flow.

Part of their work included an analysis of decades-old studies of water pressure underneath mountain glaciers, which "have been largely overlooked by the glaciological community." Stearns and van der Veen paired the mountain-glacier results with the recent observations on surface velocity from the outlet glaciers in Greenland.

"We can calculate the friction at the bed of glaciers by investigating spatial patterns of surface velocity. Surprisingly, we found that the two are not at all correlated. Pressure is different and much harder to measure. We know what the pressure at the terminus is because the glacier is floating there, and we can calculate up-flow pressure based on ice thickness. It's not a perfect estimate, but it gives us a good first approximation. If we could, we'd love to put boreholes into all 140 glaciers around Greenland and measure water pressure directly, but that's not practical."

Stearns and van der Veen found the relationship between subglacial water pressure in Greenland's outlet glaciers lined up with measurements taken from the mountain glaciers in the 1980s, implying the processes for sliding variations are also similar.

"The simplified sliding relation can appropriately reproduce spatial patterns of ice velocity," the KU researchers said. "This is in stark contrast to current modeling techniques, which involve tuning the sliding parameter in order to match observed velocities."

"Models that are used to predict sea-level change are inexact because we can't directly measure processes happening at the bed," Stearns said. "Current models using Weertman solutions require tuning to match observations. It's an imperfect way of doing what has to be done to come up with estimates. It has a lot of knobs. With this new parameter, we're trying to reduce the amount of tuning needed."

Even though "people were waiting for someone to challenge Weertman, people knew it needed to be improved," Stearns said she worried about causing upset with scientists who'd relied on the older model for earlier research.

"I was a little nervous," she said. "I was anxious because it negates what people have been using for a while. It calls into question the model they're using. But the reaction has been positive so far. People have been encouraging of a new systematic approach to a sliding law."

Stearns has too much humility to dub her new formula the "Stearns model," even though it improves and replaces the less accurate "Weertman model," named after the scientist who devised it.

She stressed her revised formula is part of the self-correcting nature of scientific inquiry and shouldn't shed doubt on climate science or the inexorable rise of sea levels around the world as more ice from Greenland and Antarctica melts into the ocean.

"I hope it helps people believe in our projections," she said. "This is based more on physical processes and less on things you have to tune for any reason. Anything that's improving how we model ice sheets in the future is a good thing -- how are ice sheets responding to climate change? With these model improvements, we're getting a step closer to a really accurate understanding."
-end-


University of Kansas

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.