Nav: Home

The fingerprints of harmful molecules could be detected noninvasively via black silicon.

June 19, 2018

Scientists of the Far Eastern Federal University (FEFU) in cooperation with colleagues from the Russian Academy of Sciences (RAS), Australian and Lithuanian Universities have improved the technique of ultrasensitive nonperturbing spectroscopic identification of molecular fingerprints.

A group of physicists experimentally confirmed that molecular fingerprints of toxic, explosive, polluting and other dangerous substances could be reliably detected and identified by surface-enhanced Raman spectroscopy (SERS) using black silicon (b-Si) substrate. The results of the work are published in the authoritative scientific journal Nanoscale.

"When detecting the smallest molecules using SERS spectroscopy their interaction with the nanostructured substrate - the platform allowing ultrasensitive identification - is crucial", the head of research team Alexander Kuchmizhak, Ph.D., reported. Alexander is a researcher of the Department of Theoretical and Nuclear Physics of the School of Natural Sciences of the FEFU. He also added: "Currently noble metals-based substrates are chemically active and as a result, they distort the characteristic molecules signals."

"Due to its' special morphology black silicon significantly enhances the signal from the molecules wanted. This nanomaterial doesn't support catalytic conversion of the analyte as it could be in the case of the metal-based substrates applying. The 'black silicon'- based substrate is unique: being absolutely chemically inert and non-invasive it could support a strong and non-distorted signal," told Alexander Kuchmizhak.

The substrate can be fabricated by using the easy-to-implement scalable technology of plasma etching, thus has good prospects for commercial implementation. Such inexpensive non-metallic substrates with high accuracy of detection can be promising for routine SERS applications, where the non-invasiveness is of high importance.

Valuable properties of black silicon were discovered thanks to extensive scientific cooperation. Samples of the material were developed and provided by Australian colleagues, experimental work was carried out in the laboratories of the Institute of Chemistry and the Institute of Automation and Control Processes of the Far Eastern Branch of the RAS, as well as in the Scientific and Educational Center "Nanotechnologies" of the Engineering School of the FEFU.
-end-
The research is supported by a grant of Russian Science Foundation

Original article DOI:10.1039/C8NR02123F

Contacts: Alexander Kuchmizhak, e-mail: alex.iacp.dvo@mail.ru, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia

Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia

School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia

Swinburne University of Technology, John st., Hawthorn 3122, Australia

Institute of Physics, Center for Physical Sciences and Technology, 231 Savanoriu Ave., LT-02300 Vilnius, Lithuania

Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton, Australia

Far Eastern Federal University

Related Nuclear Physics Articles:

US nuclear regulators greatly underestimate potential for nuclear disaster
The US Nuclear Regulatory Commission relied on faulty analysis to justify its refusal to adopt a critical measure for protecting Americans from nuclear-waste fires at dozens of reactor sites around the country, according to an article in the May 26 issue of Science magazine.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
New path suggested for nuclear fusion
Scientists at Rice University, the University of Illinois at Urbana-Champaign and the University of Chile offer a glimpse into a possible new path toward the production of energy through nuclear fusion.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Researchers model the way into a nuclear future
The main type of nuclear fuel is the uranium oxide pellet composition.
Nuclear CSI: Noninvasive procedure could identify criminal nuclear activity
Determining if an individual has handled nuclear materials is a challenge national defense agencies currently face.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Nuclear puzzle may be clue to fifth force
In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unraveling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature.
New approach to nuclear structure, freely available
The atomic nucleus is highly complex. Understanding this complexity often requires a tremendous amount of computational power.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Nuclear Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.