Nav: Home

The fingerprints of harmful molecules could be detected noninvasively via black silicon.

June 19, 2018

Scientists of the Far Eastern Federal University (FEFU) in cooperation with colleagues from the Russian Academy of Sciences (RAS), Australian and Lithuanian Universities have improved the technique of ultrasensitive nonperturbing spectroscopic identification of molecular fingerprints.

A group of physicists experimentally confirmed that molecular fingerprints of toxic, explosive, polluting and other dangerous substances could be reliably detected and identified by surface-enhanced Raman spectroscopy (SERS) using black silicon (b-Si) substrate. The results of the work are published in the authoritative scientific journal Nanoscale.

"When detecting the smallest molecules using SERS spectroscopy their interaction with the nanostructured substrate - the platform allowing ultrasensitive identification - is crucial", the head of research team Alexander Kuchmizhak, Ph.D., reported. Alexander is a researcher of the Department of Theoretical and Nuclear Physics of the School of Natural Sciences of the FEFU. He also added: "Currently noble metals-based substrates are chemically active and as a result, they distort the characteristic molecules signals."

"Due to its' special morphology black silicon significantly enhances the signal from the molecules wanted. This nanomaterial doesn't support catalytic conversion of the analyte as it could be in the case of the metal-based substrates applying. The 'black silicon'- based substrate is unique: being absolutely chemically inert and non-invasive it could support a strong and non-distorted signal," told Alexander Kuchmizhak.

The substrate can be fabricated by using the easy-to-implement scalable technology of plasma etching, thus has good prospects for commercial implementation. Such inexpensive non-metallic substrates with high accuracy of detection can be promising for routine SERS applications, where the non-invasiveness is of high importance.

Valuable properties of black silicon were discovered thanks to extensive scientific cooperation. Samples of the material were developed and provided by Australian colleagues, experimental work was carried out in the laboratories of the Institute of Chemistry and the Institute of Automation and Control Processes of the Far Eastern Branch of the RAS, as well as in the Scientific and Educational Center "Nanotechnologies" of the Engineering School of the FEFU.
-end-
The research is supported by a grant of Russian Science Foundation

Original article DOI:10.1039/C8NR02123F

Contacts: Alexander Kuchmizhak, e-mail: alex.iacp.dvo@mail.ru, School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia

Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia

School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia

Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia

Swinburne University of Technology, John st., Hawthorn 3122, Australia

Institute of Physics, Center for Physical Sciences and Technology, 231 Savanoriu Ave., LT-02300 Vilnius, Lithuania

Melbourne Centre for Nanofabrication, ANFF, 151 Wellington Road, Clayton, Australia

Far Eastern Federal University

Related Nuclear Physics Articles:

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Six degrees of nuclear separation
For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
How to dismantle a nuclear bomb
MIT team successfully tests a new method for verification of weapons reduction.
Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.
Milestones on the way to the nuclear clock
For decades, people have been searching for suitable atomic nuclei for building an ultra-precise nuclear clock.
Nuclear winter would threaten nearly everyone on Earth
If the United States and Russia waged an all-out nuclear war, much of the land in the Northern Hemisphere would be below freezing in the summertime, with the growing season slashed by nearly 90 percent in some areas, according to a Rutgers-led study.
Nuclear physics in search of world artifacts
NUST MISIS scientists together with the colleagues from PN Lebedev Physical Institute of the Russian Academy of Sciences of the Russian Academy of Sciences, Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University and Dagestan State University have published the first results of a 'scan' obtained by the method of muon radiography of the underground space in the Derbent fortress of Naryn-Kala.
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
More Nuclear Physics News and Nuclear Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.