Nav: Home

Ocean's heat cycle shows that atmospheric carbon may be headed elsewhere

June 19, 2018

As humans continue to pump the atmosphere with carbon, it's crucial for scientists to understand how and where the planet absorbs and naturally emits carbon.

A recent study in the journal Nature Geosciences examined the global carbon cycle and suggests that existing studies may have misgauged how carbon is distributed around the world, particularly between the northern and southern hemispheres. The results could change projections of how, when and where the currently massive levels of atmospheric carbon will result in environmental changes such as ocean acidification.

By reexamining ocean circulations and considering the carbon-moving power of rivers, the study's authors suggest that as much as 40 percent of the world's atmospheric carbon absorbed by land needs to be reallocated from existing estimates. In particular, the Southern Ocean encircling Antarctica and forests in the northern hemisphere -- while still substantial absorbers or "sinks" of carbon --may not take up as much as scientists have figured.

"The carbon story we got is more consistent with what people have observed on the ground," said first author Laure Resplandy, an assistant professor of geosciences and the Princeton Environmental Institute.

"Rivers have been largely overlooked," Resplandy said. "We need to better constrain the transport of carbon from the land to the ocean by rivers. Otherwise, this carbon is attributed to the land sink and is missing from the ocean sink. If carbon goes into the land or into the ocean, it doesn't have the same impact."

Resplandy and her co-authors used models and field observations to find that the world's oceans transport heat between the northern and southern hemispheres in the same way that carbon is transported. The transport of heat, however, is easier to observe. By tracking this heat, the researchers discovered that the ocean in the southern hemisphere is a much smaller carbon sink than previously thought and that the land at the same latitude is an almost non-existent source of carbon.

At the same time, the land in the northern hemisphere is a much smaller sink, meaning that it absorbs less carbon than climate models had accounted for. Instead, the researchers found that this carbon is sent to the ocean by rivers and transported to the southern hemisphere by ocean currents with 20 to 100 percent more strength than previous studies and models had shown.

For scientists, the world's carbon "budget" is like a bank ledger, Resplandy said. The carbon being absorbed into the global cycle needs to match the carbon being emitted. While the ocean carbon cycle is well documented, direct observations of carbon flux on land are difficult to obtain and influenced by numerous factors. As a result, the extent to which land acts as a sink or source is largely deduced by assigning it whatever carbon is left over after ocean data are considered, Resplandy said.

"In the southern hemisphere, the ocean sink was overestimated. As a result, the land, which is deduced from observed atmospheric carbon dioxide and the assumed ocean sink in the same region, was found to be a source," Resplandy said.

"This was highly surprising though as there is not a lot of land mass in the southern hemisphere to sustain this source," she said. "Our new estimate reconciles this apparent discrepancy by suggesting that there is a weaker ocean sink and close-to-zero land flux in the south."

In a commentary about the paper published in Nature Geosciences, Andrew Lenton, a research scientist at the Centre for Southern Hemisphere Oceans Research in Australia, wrote that the researchers established a correlation between heat and carbon transport, and showed that the pre-industrial carbon cycle can inform the understanding of the cycle today.

The researchers "provided an important baseline for understanding and attributing changes in land and ocean sinks in response to increasing atmospheric CO2 concentrations," Lenton wrote. "Their results demonstrate the importance of the pre-industrial carbon cycle in setting the distribution of carbon sinks in the present day, and the power of exploiting the relationship between ocean heat and carbon transport driven by large-scale circulation."

Scientists need to know how much carbon is entering the oceans, and where, so that they can more accurately project environmental changes that have a global reach, Resplandy said. Oceans, especially in the southern hemisphere, naturally take up carbon and heat from the atmosphere. But the price paid is a warmer ocean and higher acidity that threatens marine life and sea-based economies such as fishing.

"Now it matters to do a better job understanding the ocean," Resplandy said. "Our main point is that carbon gets re-distributed because it was wrongly allocated. A lot of people had different pieces, but all the pieces weren't quite fitting together."
-end-
Resplandy worked on the study with Ralph Keeling, a professor and program director at the Scripps Institution of Oceanography at the University of California-San Diego; Christian Rödenbeck, a research scientist at the Max Planck Institute for Biogeochemistry in Germany; Briton Stephens and Matthew Long, scientists at the National Center for Atmospheric Research; Samar Khatiwala, professor of Earth sciences at the University of Oxford; Keith Rodgers, a research oceanographer in Princeton's Program in Atmospheric and Oceanic Sciences; Laurent Bopp, director of CNRS at Ecole Polytechnique/Sorbonne Universités in Paris; and Pieter Tans, chief of the Carbon Cycle Greenhouse Gases Group at NOAA's Earth System Research Laboratory.

The paper, "Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport," was published online in advance of print June 11 by Nature Geosciences. This work was supported by the National Oceanic and Atmospheric Administration's Climate Program Office (grant no. NA13OAR4310219); the National Science Foundation (grant no. OCE 10-60804); and NASA (award no. NNX14AL85G).

Princeton University

Related Carbon Articles:

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science
Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.
Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.
Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.
Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.
Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.
Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?
First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
New route to carbon-neutral fuels from carbon dioxide discovered by Stanford-DTU team
A new way to convert carbon dioxide into the building block for sustainable liquid fuels was very efficient in tests and did not have the reaction that destroys the conventional device.
More Carbon News and Carbon Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.