Nav: Home

'Kiss of death' cancer

June 19, 2018

It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negative breast cancer is aggressive and deadly. Patients are currently treated by chemotherapy but there is no guarantee of success - and unfortunately, for those that chemotherapy does not work, the survival rate remains only 12 months.

Doctors are turning to combination therapies - cocktails of drugs - in an effort to kill the cancer. However there is no reliable way to predict which combinations, amongst hundreds, will work (and work quickly) for an individual patient with triple negative breast cancer.

Monash researchers have used genetic and treatment data from triple negative cancer cells grown in the lab and from hundreds of patients world-wide to develop a computer program, which has revealed a previously unknown combination of drugs that may be the answer to the disease. Published today in the prestigious journal, PLOS Computational Biology, Dr Lan Nguyen from the Monash Biomedicine Discovery Institute, and his team, believes the computer model will eventually become an app that clinicians can use to match the best combinations of drugs for individual patients who present with the disease.

Triple negative breast cancer cells can develop resistance to a single targeted drug within days, sometimes hours - largely by re-routing the signaling pathways within the cells.

"It's similar to when there's a car accident, and the traffic manages to re-route itself around it without causing gridlock," Dr Nguyen said.

"But how exactly these cancer cells find new routes to avoid the drug effect remains largely unknown," he added.

The Monash team, in collaboration with colleagues at the Weizmann Institute in Israel, have characterised a key signaling network that drives the growth of triple negative breast cancers and developed a computer model that can predict how the network re-routes in response to a particular drug agent.

This new model and its predictions then allowed them to rank various combinations of drugs as to which are the most likely to defeat the cancer, by blocking the new route undertaken by the cancer cells. Using data from The Cancer Genome Atlas, a database of cancer genes and patient histories run by the National Institutes of Health in the US, the researchers tested their league table of drug combinations to determine their success in people who had survived triple negative breast cancer.

Importantly they can tell, by examining a patient's genomic and proteomic information and inputting this information into their computer model, who may benefit from this drug combination and who may not - so that precious time is not lost in treating a patient with the wrong drugs.

The researchers found a previously unknown combination of two drugs that the model predicts could be successful in treating this previously untreatable disease, according to Dr Sungyoung Shin, first author on the paper.

"We hope to have this new combination in clinical trials in two to five years," Dr Nguyen said.

The computer model can be adapted and used to determine effective drug combinations for other serious cancers, such as lung and melanoma, where network re-routing in order evade drug effect has been observed, he added.

The study, co-led by Dr Nguyen (Monash) and Professor Sima Lev (Weizmann), provides an important advancement towards development of personalised treatment for cancer patients.
-end-
Read the full paper in PLOS Computational Biology titled Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer.

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media enquiries:

Tania Ewing
0408 378 422
taniaewing@taniaewing.com

Monash University

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.