Nav: Home

Site of the next major earthquake on the San Andreas Fault?

June 19, 2018

Boulder, Colo., USA: Many researchers hypothesize that the southern tip of the 1300-km-long San Andreas fault zone (SAFZ) could be the nucleation site of the next major earthquake on the fault, yet geoscientists cannot evaluate this hazard until the location and geometry of the fault zone is documented.

In their new paper for Lithosphere, Susanne Jänecke and colleagues use detailed geologic and structural mapping of the southern 30 km of the San Andreas fault zone in southern California to show that it is a highly faulted volume of rock that is 1-4 km wide and organized as a sheared ladder-like structure in the upper 3-5 kilometers of the earth.

This newly identified Durmid ladder structure is at least 25 km long, has tens of master right-lateral and right-reverse faults along its edges and hundreds of left- and right-lateral cross faults in between. The Durmid ladder structure trends northwest, extends from the well-known main trace of the San Andreas fault (mSAF) on the northeast side to a newly identified East Shoreline fault zone (ESF) on the opposite edge.

Many years of detailed field study validated the team's 2011 hypothesis about the existence of the East Shoreline strand of the SAFZ northeast of the margin of the Salton Sea, and this paper documents this previously unknown active fault using geophysical and geologic datasets along the entire northeast margin of Coachella Valley, California. The East Shoreline fault, say the authors, probably becomes the Garnet Hills fault, north of Palm Springs, and together they parallel the mSAF for >100 km.

Uplifted, highly folded and faulted Pliocene to Holocene sedimentary rocks, evidence for pervasive shortening, map-scale damage zones, and extremely rapid block rotation indicate that convergence across the Durmid ladder structure of the SAFZ is the smaller, secondary component that accompanies more rapid right-lateral motions. Small amounts of shallow creep and triggered slip regularly produce hairline fractures along the mSAF and Jänecke and colleagues recognize identical features within the ESF and along some cross faults of the Durmid ladder structure.

It is not clear how past earthquakes interacted with this well-organized multi-fault structure, and, notes Jänecke, this makes future behavior difficult to predict. The mSAF was the only active fault considered by the geoscience community in this crucial area prior to our detailed study.

New and published geophysical data sets and drill hole data in Coachella Valley show that the East Shoreline fault is a voluminous fault zone that extends in all three dimensions. It is well-imaged southwest of the mSAF and appears to persist into the subsurface at the southwest edge of a flower structure that may converge and simplify at depth.

In such an interpretation, the ESF is steep, dips northeast, and is a key structure at the basinward edge of an asymmetric flower-like structure identified by Fuis et al. (2017) directly northwest of this study area. Southward, the Durmid ladder structure widens gradually as it bends and interacts with the even wider Brawley Seismic zone. The component of shortening across the southernmost San Andreas fault zone gives way along strike to components of extension in the Brawley Seismic Zone within a defined transition zone. This geometry makes it likely that both fault zones could fail during a single earthquake, as suggested by prior research.

Several-kilometer-wide strike-slip fault zones, like the southern 30 km of the SAFZ, occur along many active faults and underlie metropolitan areas. The 2016 Mw 7.8 Kaikoura earthquake in New Zealand revealed that ladder-like fault zones can be enormous (at least 25 km wide and 150 km long) and fail in a piecemeal fashion. The surface-faulting hazards, ground shaking, and cascading ruptures that might arise from interactions among faults in active, voluminous fault zones are not well understood or quantified and much research is needed to mitigate the risk posed by this important type of structure.
-end-
FEATURED ARTICLE

The Durmid ladder structure and its implications for the nucleation sites of the next M >7.5 earthquake of the San Andreas Fault or Brawley Seismic Zone in southern California

Susanne Ursula Jänecke, Utah State University, and colleagues. CONTACT: susanne.janecke@usu.edu. Paper URL: https://pubs.geoscienceworld.org/gsa/lithosphere/article/533140/Durmid-ladder-structure-and-its-implications-for. Figure: Map showing the faults and uplifting late Cenozoic basin fill (gray) of southeastern California. A larger version is available.

Open-access abstracts for LITHOSPHERE papers are online at http://lithosphere.geoscienceworld.org/content/early/recent. Representatives of the media may obtain complimentary PDF copies of LITHOSPHERE articles by contacting Kea Giles at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to LITHOSPHERE in articles published. Contact Kea Giles for additional information or assistance. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

http://www.geosociety.org/

Geological Society of America

Related San Andreas Fault Articles:

Lessons from Parkfield help predict continued fault movements after earthquakes
A new study shows that the San Andreas Fault continued to slip gradually for six to 12 years after the 2004 magnitude 6.0 Parkfield, Calif., earthquake, raising the issue of continued damage to structures built across fault zones after damaging earthquakes.
Fault system off San Diego, Orange, Los Angeles counties could produce magnitude 7.3 quake
The Newport-Inglewood and Rose Canyon faults had been considered separate systems but a new study shows that they are actually one continuous fault system running from San Diego Bay to Seal Beach in Orange County, then on land through the Los Angeles basin.
Finding fault: USU geologist probes earthquake history of Utah's Wasatch Fault
Utah State University geologist Alexis Ault is exploring processes that cause earthquakes in Utah's Wasatch Fault down to the nano-scale.
Ventura fault could cause stronger shaking, new research finds
A new study by a team of researchers, including one from UC Riverside, found that the fault under Ventura, Calif., would likely cause stronger shaking during an earthquake and more damage than previously suspected.
Researchers find biggest exposed fault on Earth
Geologists have for the first time seen and documented the Banda Detachment fault in eastern Indonesia and worked out how it formed.
More San Andreas Fault News and San Andreas Fault Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...