Nav: Home

Can evolution explain why the young are often more susceptible than adults to infection?

June 19, 2018

In many species, including humans, the young are often more susceptible to infection than adults, even after accounting for prior exposure to infection. From an evolutionary perspective this may seem puzzling, as dying young or becoming infertile due to infection means organisms will be unable to reproduce. However, new research from the University of Bath suggests that many species may have evolved to prioritise growth over immunity while maturing.

Understanding precisely how immunity varies with age in different species is complex. Humans, like other vertebrates, possess both innate and adaptive immune responses, but the adaptive component is only effective against infections following exposure. Since younger individuals are less likely to have prior exposure to many infections, they are expected to be more susceptible. Yet even after accounting for prior exposure, there is growing evidence that children are inherently more susceptible than adults to certain infections. Similarly, many animal and plant species which lack adaptive immune systems have also been found to be more susceptible during juvenile stages, suggesting this phenomenon is widespread in nature.

In a new study published in Proceedings of the Royal Society B, scientists from University of Bath and the University of Virginia use theoretical models to predict how and when juveniles evolve to be more susceptible than adults to infection. Crucially, the researchers study what happens if juveniles have to choose between using their limited resources for growth or to prevent infection.

Dr Ben Ashby, lead author on the paper and a research fellow funded by the Natural Environment Research Council (NERC) in Bath's Department of Mathematical Sciences, explains: "By temporarily diverting resources away from immunity during development, organisms are at greater risk of infection while young but can grow faster or larger, giving them an advantage during adulthood."

The models show that the extent to which juveniles evolve to be more susceptible than adults depends on both the life cycle of the host and the characteristics of the disease.

On the use of mathematical models, Dr Ashby said: "Studying simple mathematical models allows us to make general predictions about how juvenile susceptibility is likely to evolve in nature, telling us how factors such as lifespan and the length of the juvenile period affect the trade-off organisms may face between growth and immunity."

Indeed, the models predict that juvenile susceptibility should generally be lowest when organisms have lifespans that are neither too short, nor too long. If the lifespan of the host is too short, then it is difficult for the disease to spread and so hosts can risk being more susceptible during development. If hosts have long lifespans with relatively short juvenile stages, then the risk of increased susceptibility while developing is only incurred for a brief time and so juvenile susceptibility is again favoured.

In future, the team hopes to test their predictions by studying seedling resistance in plants. Dr Ashby added: "Many important crops have been artificially selected for seedling resistance, so we know that it is physiologically possible but often doesn't evolve in nature. It seems likely that this is because plants, like other hosts, have to balance resources during development between growth and immunity."
-end-
The study "The evolution of juvenile susceptibility to infectious disease" is published online in journal Proceedings of the Royal Society B. The study was funded by the Natural Environment Research Council (NERC, grant NE/N014979/1).

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or c.m.melvin@bath.ac.uk

Notes

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

University of Bath

Related Infection Articles:

Revealed: How E. coli knows how to cause the worst possible infection
The discovery could one day let doctors prevent the infection by allowing E. coli to pass harmlessly through the body.
UK study shows most patients with suspected urinary tract infection and treated with antibiotics actually lack evidence of this infection
New research presented at this week's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam, Netherlands (April 13-16, 2019) shows that only one third of patients that enter the emergency department with suspected urinary tract infection (UTI) actually have evidence of this infection, yet almost all are treated with antibiotics, unnecessarily driving the emergence of antimicrobial resistance.
Bacteria in urine doesn't always indicate infection
Doctors should think carefully before testing patients for a urinary tract infection (UTI) to avoid over-diagnosis and unnecessary antibiotic treatment, according to updated asymptomatic bacteriuria (ASB) guidelines released by the Infectious Diseases Society of America (IDSA) and published in Clinical Infectious Diseases.
Subsidies for infection control to healthcare institutions help reduce infection levels
Researchers compared three types of infection control subsidies and found that under a limited budget, a dollar-for-dollar matching subsidy, in which policymakers match hospital spending for infection control measures, was the most effective at reducing the number of hospital-acquired infections.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
More Infection News and Infection Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...