Nav: Home

Competition for space: Oncogenic mutant cells vs normal cells

June 19, 2018

Cells in multicellular tissues adhere to each other. Epithelial tissues on the surface layer of the intestines and skin pack cells into a hexagonal (honeycomb) pattern, with cells adhering tightly to the six cells adjacent to them (Fig. 1). The whole tissue can be represented as a network, and body function is maintained by keeping this basic adhesion network intact.

During the initial stage of tumor progression, oncogenic mutant cells (precancer cells) and normal cells compete for space in the adhesion network of normal tissues. However, how oncogenic mutant cells selectively occupy the space had not been understood. It was thought that oncogenic mutant cells multiplied via cell division faster than normal cells, but this was not verified.

A group of researchers led by Koichi Fujimoto at Osaka University analyzed the state of oncogenic mutant cells present in normal multicellular tissues based on prediction by computer simulation and experimental verification.

Contrary to expectations, only oncogenic mutant cells selectively expanded their area without cell division after the death of normal cells, occupying the space lost by apoptosis (Fig. 2). In addition, oncogenic cells expanded through rearrangement of the honeycomb packing pattern in favor of the expansion of oncogenic mutant cells. Following the repeated removal of normal cells and rearrangement of adjacent cells, tissues consisting of a few hundreds of cells turned into oncogenic mutant cells within a few hours (Fig. 3). These results were published in Current Biology.

Lead author Alice Tsuboi said, "In simulations used in this study, modeling is developed based on shape analogies between cells of a multicellular tissue and soap bubbles (polygons). Cells and bubbles are composed of different molecules, but they share the ability to produce physical properties such as surface tension. By incorporating biological knowledge into simulations, we were able to predict new phenomena and mechanisms."

This group's achievements will promote an understanding of the initial stage of tumor progression in which oncogenic mutant cells spread to normal tissues and cause cancer. In addition, research on multicellular tissues based on prediction via a combination of computer simulation and experimental verification will find wide application, ranging from normal development of living organisms to the development of diseases.
-end-
A related movie can be shown at the following link. https://www.cell.com/cms/attachment/2119340573/2092433110/mmc2.mp4

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Osaka University

Related Cell Division Articles:

Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Three rings stop cell division in plants
Arising from a collaboration between plant and animal biologists, and organic chemists at ITbM, Nagoya University, the group succeeded in developing a new compound, a triarylmethane that can rapidly inhibit cell division in plants.
Strong, steady forces at work during cell division
Biologists who study the mechanics of cell division have for years disagreed about how much force is at work when the cell's molecular engines are lining chromosomes up in the cell, preparing to winch copies to opposite poles across a bridge-like structure called the kinetochore to form two new cells.
Unconventional cell division in the Caribbean Sea
Bacteria are immortal as long as they keep dividing. For decades it has been assumed that a continuous, proteinaceous ring is necessary to drive the division of most microorganisms.
Differing duration of brain stem cell division
Stem cells in the developing human brain take more time to arrange the chromosomes before distribution than stem cells of great apes.
Cell division and inflammatory disease link revealed
A ground-breaking study by University of Manchester and Liverpool scientists and published in the journal eLife has identified a new link between inflammation and cell division.

Related Cell Division Reading:

The Cell and Division Biology for Kids | Children's Biology Books
by Baby Professor (Author)

The Animal Cell and Division Biology for Kids | Children's Biology Books
by Baby Professor (Author)

Asymmetric Cell Division in Development, Differentiation and Cancer (Results and Problems in Cell Differentiation)
by Jean-Pierre Tassan (Editor), Jacek Z. Kubiak (Editor)

Asymmetric Cell Division (Progress in Molecular and Subcellular Biology)
by Alvaro Macieira-Coelho (Editor)

How to Replicate a Wood: A Story Inspired by the Amazing Cell Division Process (The Wonderful Wood) (Volume 1)
by Tali Lavy (Author), Einat Kedem (Editor), Tammara Or Slilat (Editor), Tammara Or Slilat (Editor), Guy Salemnick (Editor)

Cell Division and Genetics (Cells and Life)
by Robert Snedden (Author)

Cell Division Basics A Walkthrough Guide to the Cell Cycle, Mitosis and Meiosis (Walkthrough Basics Book 6)

Tom Clancy Series Order & Checklist: Jack Ryan series, Jack Ryan Jr series, Op Center, Splinter Cell, Power Plays, all others (Series List Book 6)

Chromosomes and plant cell division in space
by National Aeronautics and Space Administration (NASA) (Author)

Life Science: Plant and Animal Cells, Cell Processes, Cell Division
by Visual Brand Learning (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...