Nav: Home

Miniaturized infrared cameras take colored photos of the eye

June 19, 2018

Look into one's eye and you might be able to see their soul. Or at least you can see signs of a stroke or diabetes. By looking at the blood vessels in the eyes, doctors can tell a lot about a person's health. This can be done using fundus photography, which has been around for almost two centuries and is the standard imaging tool used by ophthalmologists. However, for many, especially the poor, traveling to a clinic is not practical. Researchers at the Nara Institute of Science and Technology (NAIST), in partnership with scientists at the University of Tokyo, have devised a new fundus camera small enough to fit on a smartphone that could get around this problem. The study was described at the 2018 Symposia on VLSI Technology and Circuits this month.

NAIST Professor Jun Ohta is researching the interface of photonic materials and biomedical treatments for the eye.

"We study photonic devices for biomedical uses. One of our goals is retinal prosthesis to restore vision. We work on highly sensitive imaging sensors for diagnostics of the eye," he said.

When taking a photo of the fundus, the camera must align itself with the path of light that travels through the retina to the back of the eye. The eye, however, makes regular and rapid movements, constantly changing this path. To resolve this problem, the new camera described at the symposium achieves 1000 images/s.

Another challenge when imaging the fundus is the wavelengths of light detected by the camera. To take a clear fundus image, a strong flush light must be introduced inside an eye through a pupil because it is completely dark inside the eye.

For this second problem, the researchers modified CMOS cameras. The cameras use microelectronics technology to acquire color images by using three kinds of invisible light or near infrared light. The new module was developed on a miniaturized sensor and incorporates three near infrared filters. These filters acquire three signals that can be given a red, green and blue value to generate a color photograph of the eye while using near infrared light that is not sensed.

Importantly, at 2.3 mm2 in size, the module is small enough to be mounted on a smartphone without compromising the power necessary for capturing highly detailed images with which a user can take a fundus image by him/herself. Ohta imagines a future where patients can be diagnosed with nothing more than the phone in their pocket.

"People may be able to take a picture of their eye by themselves and know the status of their health from the fundus image. This could open the door for a personal healthcare system using fundus images. In addition, they could send it to a doctor over the internet. For people in countries like Japan perhaps, visiting an ophthalmologist is not difficult. However, in many countries, it is a real privilege. I want to see our technology improve people's health globally," he said.
-end-
This research has been supported by the ACCEL project (Research Director: Professor Masatoshi Ishikawa, Graduate School of Information Science and Technology, The University of Tokyo) from Japan Science and Technology Agency.

Resource

Title: Next-generation Fundus Camera with Full Color Image Acquisition in 0-lx Visible Light by 1.12-micron Square Pixel, 4K, 30-fps BSI CMOS Image Sensor with Advanced NIR Multi-spectral Imaging System

Authors: Hirofumi Sumi, Hironari Takehara, Shunsuke Miyazaki, Daiki Shirahige, Kiyotaka Sasagawa, Takashi Tokuda, Yoshihiro Watanabe, Norimasa Kishi, Jun Ohta & Masatoshi Ishikawa

Publication: 2018 Symposia on VLSI Technology and Circuits

Information about Prof. Ohta lab can be found at the following website: http://mswebs.naist.jp/LABs/pdslab/index-e.html

Nara Institute of Science and Technology

Related Smartphone Articles:

Don't rely on smartphone apps to treat back pain
University of Sydney researchers have found that smartphone apps for treating back pain have questionable value as they are generally of poor quality, and have not been rigorously evaluated.
App uses smartphone compass to stop voice hacking
A University at Buffalo-led team of engineers is creating an app to stop voice hacking.
Smartphone-controlled cells help keep diabetes in check
Cells engineered to produce insulin under the command of a smartphone helped keep blood sugar levels within normal limits in diabetic mice, a new study reports.
Smartphone addiction leads to personal, social, workplace problems
Excessive smartphone use leads to problems, and females are especially susceptible to addiction, according to new research from Binghamton University- State University of New York.
Using a smartphone to screen for male infertility
Investigators at Brigham and Women's Hospital set out to develop a home-based diagnostic test that could be used to measure semen quality using a smartphone-based device.
Smartphone interruptions: Are yours relentless and annoying?
Does your smartphone spew a relentless stream of text messages, push alerts, social media messages and other noisy notifications?
Live cell imaging using a smartphone
A recent study from Uppsala University shows how smartphones can be used to make movies of living cells, without the need for expensive equipment.
Smartphone apps may help study cardiovascular health, behaviors
In a study published online by JAMA Cardiology, Euan A.
Smartphone app for early autism detection being developed by UB undergrad
Early detection of autism can dramatically improve the benefits of treatment, but often the disability is not suspected until a child enters school.
Increased smartphone screen-time associated with lower sleep quality
Exposure to smartphone screens is associated with lower sleep quality, according to a study published Nov.

Related Smartphone Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...