Nav: Home

Unexpected culprit -- wetlands as source of methane

June 19, 2019

Wetlands are an important part of the Earth's natural water management system. The complex system of plants, soil, and aquatic life serves as a reservoir that captures and cleans water. However, as cities have expanded, many wetlands were drained for construction. In addition, many areas of land in the Midwest were drained to increase uses for agriculture to feed a growing world.

Draining wetlands disconnected the natural flow and retention of water, a system that had worked well for millennia. One solution to wetland draining was to rebuild these wetlands in another area (more convenient to humans). These are referred to as "constructed wetlands." In other cases, constructed wetlands are built to rebuild an area no longer used for agriculture.

How these constructed wetlands are built and managed can make a big environmental impact. Karla Jarecke and researchers from several universities have been studying wetlands' impact on greenhouse gas methane.

"Globally, wetlands are the largest natural source of methane to the atmosphere," says Jarecke. "Methane has a much bigger impact than carbon dioxide on global warming - an impact 25 times greater."

Both natural and constructed wetlands emit methane. Due to their nature - wetlands are, after all, wet - soil microbes and plants are forced to metabolize under anaerobic conditions. And, this leads to methane production.

The soil microbes are responsible for the production of methane in wetlands. The methane then gets to the atmosphere via diffusion, transport through plant tissue, and the episodic release of gas bubbles. The hydrologic stability of wetland soils, as well as the transport efficiency through plants, can affect how much and how often methane is released from the soil.

"Understanding the conditions under which methane is produced and released in wetlands could lead to solutions to reduce methane emissions," says Jarecke.

But, studying large areas like wetlands can prove impossible. So, Jarecke and her colleagues made "mesocosms" of wetlands - manageable, outdoor chambers where methane emissions could more easily be measured. Mesocosms are structural research areas that bridge the gap between lab studies and large field studies.

The study focused on two common wetland plants and their potential role in methane emissions: swamp milkweed and northern water plantain. Plants and soils were collected from a constructed wetland in Dayton, Ohio. They were then transported to Lincoln, Nebraska to create wetland mesocosms. The Dayton site had formerly been drained and used for agriculture and was rebuilt as wetland in 2012.

The researchers harvested seedlings of swamp milkweed and northern water plantain from the wetland and transplanted them into soils collected in PVC pipe. They covered individual plants with clear acrylic cylinders during gas sampling. This helped them measure and quantify methane emissions from the soil-plant mesocosms. The study was performed in the summer of 2013.

Besides comparing the emissions of the two plant species, the researchers studied the effects of hydrology - or the saturation of the soil. "While the controls of hydrology and plant species on methane emissions are individually well-studied, the two are rarely studied together," says Jarecke.

This recent study concluded that water level and saturation influenced methane emissions more than the type of plant species. While methane emissions differed between laboratory mesocosms with water plantain and mesocosms with swamp milkweed, methane emissions did not differ in field mesocosms with each of the two species. In the field, soil saturation had a greater effect on methane emissions.

Finding plant species that reduce microbial methane production could be a key to better wetland management. For example, plants that deliver oxygen to the rooting zone can suppress microbial methane production. In addition, future research is needed to understand how varying soil saturation affects methane emissions. This information could be valuable for designing wetland topography that creates hydrologic conditions for increased carbon storage and reduced methane emissions.

Future research might focus on longer periods of time. "Methane emissions likely change as restored wetlands mature," says Jarecke. "Organic matter from root systems, decaying plants and other materials will build up. This helps restore hydrologic stability. Other research indicates that it can take just a few years to restore hydrologic aspects of a restored wetland. However, biogeochemical and biodiversity aspects can take decades or longer to recover."
-end-
This research was published in the Soil Science Society of America Journal. Funding was provided by NASA/USDA joint program on Carbon Cycle Science (grants 2011-03007 and 2011-00829) NSF DEB-1457505, and a University of Nebraska-Lincoln Undergraduate Creative Arts and Research Experiences (UCARE) grant.

To read a blog about constructed wetlands and their history, visit https://soilsmatter.wordpress.com/2018/09/15/wait-dont-drain-the-swamp/

American Society of Agronomy

Related Methane Articles:

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Methane not released by wind on Mars, experts find
New study rules out wind erosion as the source of methane gas on Mars and moves a step closer to answering the question of whether life exists on other planets.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
Methane-consuming bacteria could be the future of fuel
Northwestern University researchers have found that the enzyme responsible for the methane-methanol conversion in methanotrophic bacteria catalyzes the reaction at a site that contains just one copper ion.
New measurement method for radioactive methane
The method developed by Juho Karhu in his PhD thesis work is a first step towards creating a precise measuring device.
New key players in the methane cycle
Methane is not only a powerful greenhouse gas, but also a source of energy.
Diffusing the methane bomb: We can still make a difference
The Arctic is warming twice as fast as the rest of the planet, causing the carbon containing permafrost that has been frozen for tens or hundreds of thousands of years to thaw and release methane into the atmosphere, thereby contributing to global warming.
China not 'walking the walk' on methane emissions
In China, regulations to reduce methane emissions from coal mining took full effect in 2010 and required methane to be captured or to be converted into carbon dioxide.
Interpreting new findings of methane on Mars
New data from the Mars Science Laboratory demonstrating the presence of methane presents novel challenges to explain how it was formed and what it suggests about the potential for life to exist or be supported on Mars.
More Methane News and Methane Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.