Nav: Home

A sound idea: a step towards quantum computing

June 19, 2019

Tsukuba, Japan - A team at the University of Tsukuba studied a novel process for creating coherent lattice waves inside silicon crystals using ultrashort laser pulses. Using theoretical calculations combined with experimental results that were obtained at the University of Pittsburgh, they were able to show that coherent vibrational signals could be maintained inside the samples. This research may lead to quantum computers based on existing silicon devices that can rapidly perform tasks out of the reach of even the fastest supercomputers now available.

From home PCs to business servers, computers are a central part of our everyday life, and their power continues to grow at an astounding rate. However, there are two big problems looming on the horizon for classical computers. The first is a fundamental limit on how many transistors we can pack into a single processor. Eventually, a totally new approach will be needed if we are to continue to increase their processing capacity. The second is that even the most powerful computers struggle with certain important problems, such as the cryptographic algorithms that keep your credit card number safe on the internet, or the optimization of routes for delivering packages.

The solution to both problems may be quantum computers, which take advantage of the rules of physics that govern very small length scales, as with atoms and electrons. In the quantum regime, electrons act more like waves than billiard balls, with positions that are "smeared-out" rather than definite. In addition, various components can become entangled, such that the properties of each one cannot be completely described without reference to the other. An effective quantum computer must maintain the coherence of these entangled states long enough to perform calculations.

In the current research, a team at the University of Tsukuba and Hrvoje Petek, RK Mellon Chair of Physics and Astronomy at the University of Pittsburgh used very short laser pulses to excite electrons inside a silicon crystal. "The use of existing silicon for quantum computing will make the transition to quantum computers much easier," first author Dr. Yohei Watanabe explains. The energetic electrons created coherent vibrations of the silicon structure, such that the motions of the electron and the silicon atoms became entangled. The state of the system was then probed after a variable delay time with a second laser pulse.

Based on their theoretical model, the scientists were able to explain oscillations observed in the charge generated as a function of delay time. "This experiment reveals the underlying quantum mechanical effects governing the coherent vibrations," says senior author Prof. Muneaki Hase, who performed the experiments. "In this way, the project represents a first step towards affordable consumer quantum computers."
-end-


University of Tsukuba

Related Quantum Computing Articles:

Quantum experiments explore power of light for communications, computing
A team of quantum researchers from ORNL have conducted a series of experiments to gain a better understanding of quantum mechanics and pursue advances in quantum networking and quantum computing, which could lead to practical applications in cybersecurity and other areas.
In leap for quantum computing, silicon quantum bits establish a long-distance relationship
In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.
A platform for stable quantum computing, a playground for exotic physics
Harvard University researchers have demonstrated the first material that can have both strongly correlated electron interactions and topological properties, which not only paves the way for more stable quantum computing but also an entirely new platform to explore the wild world of exotic physics.
Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
More Quantum Computing News and Quantum Computing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.