Nav: Home

Electrons take alternative route to prevent plant stress

June 19, 2019

Plants are susceptible to stress, and with the global impact of climate change and humanity's growing demand for food, it's crucial to understand what causes plant stress and stress tolerance. When plants absorb excess light energy during photosynthesis, reactive oxygen species are produced, potentially causing oxidative stress that damages important structures. Plants can suppress the production of reactive oxygen species by oxidizing P700 (the reaction center chlorophyll in photosystem I). A new study has revealed more about this vital process: the cyclic electron flow induced by P700 oxidation is an electric charge recombination occurring in photosystem I. These findings were published on June 5 in Plants.

The research was led by Professor Chikahiro Miyake, Assistant Professor Shinya Wada, and Kanae Kadota (Kobe University), in collaboration with Professor Amane Makino (Tohoku University) and Associate Professor Yuji Suzuki (Iwate University).

Professor Miyake's team revealed in previous studies that all oxygen-producing photosynthetic species use the P700 oxidation system to deal with oxidative stress. Professor Miyake and Dr Giles Johnson (Senior Lecturer at the University of Manchester) discovered that P700 oxidation is accompanied by a cyclic electron flow (CEF) in photosystem I (PSI). This cyclic flow is not necessary for the linear electron flow that forms part of photosynthesis, so what is it doing? To find out more about this alternative flow, the team analyzed the interaction between the electron carriers linked to the reaction in the PSI complex and the PSII quantum yield [Y(II)] that evaluates the activity levels of the linear electron flow. They used a major crop: wheat leaves.

The results showed that in the electron flow from P700* (excited P700) to ferredoxin (Fd), electron carriers A0, A1, FX, FA/FB are present, and when P700?(oxidized P700) accumulates, a charge recombination occurs in which electrons flow in from the electron carriers (Figure 2). In P700* charge separation occurs, passing electrons to the electron carrier A0 and oxidizing to form P700+. P700+ receives electrons from PSII and is reduced to its ground state. Meanwhile, the electrons accepted by A0 are passed to A1, FX, and FA/FB and flow to NADP+ via Fd, ultimately producing NADPH (chemical energy used in photosynthesis). From observing the reaction speed in leaf samples, the charge recombination between FX and P700+ can be considered the dominant pathway.

The existence of the charge recombination had already been revealed on a cellular level in biochemically isolated PSI complexes, cyanobacteria and green alga. However, until now its role in photosynthesis was unclear. This finding suggests that electrons flow from FX to P700+ based on the reactivity of P700+.

As a secondary result, the team also revealed the mechanism for suppressing the production of reactive oxygen species based on the charge recombination. The electron carriers A0, A1, FX, FA/FB have a very low reduction potential compared to that of oxygen. This suggests that they can easily pass electrons to oxygen and produce reactive oxygen species. The charge recombination revealed in this study plays the role of suppressing the interaction between these electron carriers and oxygen.

This study proposes that the cyclic electron flow induced by P700 oxidation is characterized by a charge recombination reaction that occurs within the PSI complex, including the necessary conditions and the cyclic electron carrier speed. The next step is to investigate the universality of the role of charge recombination within PSI complexes.
-end-


Kobe University

Related Stress Articles:

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
A new way to see stress -- using supercomputers
Supercomputer simulations show that at the atomic level, material stress doesn't behave symmetrically.
Beware of evening stress
Stressful events in the evening release less of the body's stress hormones than those that happen in the morning, suggesting possible vulnerability to stress in the evening.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...