Nav: Home

Electrons take alternative route to prevent plant stress

June 19, 2019

Plants are susceptible to stress, and with the global impact of climate change and humanity's growing demand for food, it's crucial to understand what causes plant stress and stress tolerance. When plants absorb excess light energy during photosynthesis, reactive oxygen species are produced, potentially causing oxidative stress that damages important structures. Plants can suppress the production of reactive oxygen species by oxidizing P700 (the reaction center chlorophyll in photosystem I). A new study has revealed more about this vital process: the cyclic electron flow induced by P700 oxidation is an electric charge recombination occurring in photosystem I. These findings were published on June 5 in Plants.

The research was led by Professor Chikahiro Miyake, Assistant Professor Shinya Wada, and Kanae Kadota (Kobe University), in collaboration with Professor Amane Makino (Tohoku University) and Associate Professor Yuji Suzuki (Iwate University).

Professor Miyake's team revealed in previous studies that all oxygen-producing photosynthetic species use the P700 oxidation system to deal with oxidative stress. Professor Miyake and Dr Giles Johnson (Senior Lecturer at the University of Manchester) discovered that P700 oxidation is accompanied by a cyclic electron flow (CEF) in photosystem I (PSI). This cyclic flow is not necessary for the linear electron flow that forms part of photosynthesis, so what is it doing? To find out more about this alternative flow, the team analyzed the interaction between the electron carriers linked to the reaction in the PSI complex and the PSII quantum yield [Y(II)] that evaluates the activity levels of the linear electron flow. They used a major crop: wheat leaves.

The results showed that in the electron flow from P700* (excited P700) to ferredoxin (Fd), electron carriers A0, A1, FX, FA/FB are present, and when P700?(oxidized P700) accumulates, a charge recombination occurs in which electrons flow in from the electron carriers (Figure 2). In P700* charge separation occurs, passing electrons to the electron carrier A0 and oxidizing to form P700+. P700+ receives electrons from PSII and is reduced to its ground state. Meanwhile, the electrons accepted by A0 are passed to A1, FX, and FA/FB and flow to NADP+ via Fd, ultimately producing NADPH (chemical energy used in photosynthesis). From observing the reaction speed in leaf samples, the charge recombination between FX and P700+ can be considered the dominant pathway.

The existence of the charge recombination had already been revealed on a cellular level in biochemically isolated PSI complexes, cyanobacteria and green alga. However, until now its role in photosynthesis was unclear. This finding suggests that electrons flow from FX to P700+ based on the reactivity of P700+.

As a secondary result, the team also revealed the mechanism for suppressing the production of reactive oxygen species based on the charge recombination. The electron carriers A0, A1, FX, FA/FB have a very low reduction potential compared to that of oxygen. This suggests that they can easily pass electrons to oxygen and produce reactive oxygen species. The charge recombination revealed in this study plays the role of suppressing the interaction between these electron carriers and oxygen.

This study proposes that the cyclic electron flow induced by P700 oxidation is characterized by a charge recombination reaction that occurs within the PSI complex, including the necessary conditions and the cyclic electron carrier speed. The next step is to investigate the universality of the role of charge recombination within PSI complexes.

Kobe University

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
More Stress News and Stress Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...