Nav: Home

Astronomers make first detection of polarised radio waves in Gamma Ray Burst jets

June 19, 2019

Good fortune and cutting-edge scientific equipment have allowed scientists to observe a Gamma Ray Burst jet with a radio telescope and detect the polarisation of radio waves within it for the first time - moving us closer to an understanding of what causes the universe's most powerful explosions.

Gamma Ray Bursts (GRBs) are the most energetic explosions in the universe, beaming out mighty jets which travel through space at over 99.9% the speed of light, as a star much more massive than our sun collapses at the end of its life to produce a black hole.

Studying the light from Gamma Ray Burst jets as we detect it travelling across space is our best hope of understanding how these powerful jets are formed, but scientists need to be quick to get their telescopes into position and get the best data. The detection of polarised radio waves from a burst's jet, made possible by a new generation of advanced radio telescopes, offers new clues to this mystery.

The light from this particular event, known as GRB 190114C, which exploded with the force of millions of suns' worth of TNT about 4.5 billion years ago, reached NASA's Neil Gehrels Swift Observatory on Jan 14, 2019.

A rapid alert from Swift allowed the research team to direct the Atacama Large Millimeter/Sub-millimeter Array (ALMA) telescope in Chile to observe the burst just two hours after Swift discovered it. Two hours later the team was able to observe the GRB from the Karl G. Jansky Very Large Array (VLA) telescope when it became visible in New Mexico, USA.

Combining the measurements from these observatories allowed the research team to determine the structure of magnetic fields within the jet itself, which affects how the radio light is polarised. Theories predict different arrangements of magnetic fields within the jet depending on the fields' origin, so capturing radio data enabled the researchers to test these theories with observations from telescopes for the first time.

The research team, from the University of Bath, Northwestern University, the Open University of Israel, Harvard University, California State University in Sacramento, the Max Planck Institute in Garching, and Liverpool John Moores University discovered that only 0.8% of the jet light was polarised, meaning that jet's magnetic field was only ordered over relatively small patches - each less than about 1% of the diameter of the jet. Larger patches would have produced more polarised light.

These measurements suggest that magnetic fields may play a less significant structural role in GRB jets than previously thought.

This helps us narrow down the possible explanations for what causes and powers these extraordinary explosions. The study is published in Astrophysical Journal Letters.

First author Dr Tanmoy Laskar, from the University of Bath's Astrophysics group, said: "We want to understand why some stars produce these extraordinary jets when they die, and the mechanism by which these jets are fuelled - the fastest known outflows in the universe, moving at speeds close to that of light and shining with the incredible luminosity of over a billion suns combined.

"I was in a cab on my way to O'Hare airport in Chicago, following a visit with collaborators when the burst went off. The extreme brightness of this event and the fact that it was visible in Chile right away made it a prime target for our study, and so I immediately contacted ALMA to say we were going to observe this one, in the hope of detecting the first radio polarisation signal.

"It was fortuitous that the target was well placed in the sky for observations with both ALMA in Chile and the VLA in New Mexico. Both facilities responded quickly and the weather was excellent. We then spent two months in a painstaking process to make sure our measurement was genuine and free from instrumental effects. Everything checked out, and that was exciting.

Dr Kate Alexander, who led the VLA observations, said: "The lower frequency data from the VLA helped confirm that we were seeing the light from the jet itself, rather than from the interaction of the jet with its environment."

Dr Laskar added: "This measurement opens a new window into GRB science and the studies of energetic astrophysical jets. We would like to understand whether the low level of polarisation measured in this event is characteristic of all GRBs, and if so, what this could tell us about the magnetic structures in GRB jets and the role of magnetic fields in powering jets throughout the universe."

Professor Carole Mundell, Head of Astrophysics at the University of Bath, added: "The exquisite sensitivity of ALMA and rapid response of the telescopes has, for the first time, allowed us to swiftly and accurately measure the degree of polarisation of microwaves from a GRB afterglow just two hours after the blast and probe the magnetic fields that are thought to drive these powerful, ultrafast outflows."

The research team plans to hunt for more GRBs to continue to unravel the mysteries of the biggest explosions in the universe.
-end-
The study "ALMA detection of a linearly polarized reverse shock in GRB 190114C" is published in Astrophysical Journal Letters, and is available online at https://iopscience.iop.org/article/10.3847/2041-8213/ab2247

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or c.m.melvin@bath.ac.uk

Notes

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 9th out of 131 UK universities in the Complete University Guide 2020.

University of Bath

Related Magnetic Fields Articles:

New metrology technique measures electric fields
It is crucial that mobile phones and other wireless devices -- so prevalent today -- have accurate and traceable measurements for electric fields and radiated power.
First direct exploration of magnetic fields in the upper solar atmosphere
Scientists have explored the magnetic field in upper solar atmosphere by observing the polarization of ultraviolet light with the CLASP sounding rocket experiment during its 5-minute flight in space on Sept.
New method can model chemistry in extreme magnetic fields of white dwarfs
Approximately 10-20 percent of white dwarfs exhibit strong magnetic fields, which can reach up to 100,000 tesla.
Researchers control soft robots using magnetic fields
Engineering researchers have made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices.
Steering towards grazing fields
It makes sense that a 1,200 pound Angus cow would place quite a lot of pressure on the ground on which it walks.
Researchers propose technique for measuring weak or nonexistent magnetic fields
Researchers at the University of Iowa have proposed a new approach to sampling materials with weak or no magnetic fields.
Magnetic fields at the crossroads
Almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks.
Researchers coax particles to form vortices using magnetic fields
Researchers at Argonne created tiny swirling vortices out of magnetic particles, providing insight into the behavior that governs such systems -- which opens up new opportunities for materials and devices with new properties.
Earth's magnetic fields could track ocean heat, NASA study proposes
As Earth warms, much of the extra heat is stored in the planet's ocean.
Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities
PPPL physicists have conducted simulations that suggest that applying magnetic fields to fusion plasmas can control instabilities known as Alfvén waves that can reduce the efficiency of fusion reactions.

Related Magnetic Fields Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...