Nav: Home

'Goldilocks' neurons promote REM sleep

June 19, 2019

Every night while sleeping, we cycle between two very different states of sleep. Upon falling asleep, we enter non-rapid eye movement (non-REM) sleep where our breathing is slow and regular and movement of our limbs or eyes are minimal. Approximately 90 minutes later, how-ever, we enter rapid eye movement (REM) sleep. This is a paradoxical state where our breath-ing becomes fast and irregular, our limbs twitch, and our eyes move rapidly. In REM sleep, our brain is highly active, but we also become paralyzed and we lose the ability to thermoregulate or maintain our constant body temperature. "This loss of thermoregulation in REM sleep is one of the most peculiar aspects of sleep, particularly since we have finely-tuned mechanisms that control our body temperature while awake or in non-REM sleep", says Markus Schmidt of the Department for BioMedical Research (DBMR) of the University of Bern, and the Department of Neurology, Inselspital, Bern University Hospital. On the one hand, the findings confirm a hy-pothesis proposed earlier by Schmidt, senior author of the study, and on the other hand repre-sent a breakthrough for sleep medicine. The paper was published in "Current Biology" and highlighted by the editors with a comment.

A control mechanism saving energy

The need to maintain a constant body temperature is our most expensive biological function. Panting, piloerection, sweating, or shivering are all energy consuming body reactions. In his hypothesis, Markus Schmidt suggested that REM sleep is a behavioral strategy that shifts en-ergy resources away from costly thermoregulatory defense toward, instead, the brain to en-hance many brain functions. According to this energy allocation hypothesis of sleep, mammals have evolved mechanisms to increase REM sleep when the need for defending our body tem-perature is minimized or, rather, to sacrifice REM sleep when we are cold. "My hypothesis pre-dicts that we should have neural mechanisms to dynamically modulate REM sleep expression as a function of our room temperature", says Schmidt. Neuroscientists at the DBMR at the Uni-versity of Bern and the Department of Neurology at Inselspital, Bern University Hospital, now confirmed his hypothesis and found neurons in the hypothalamus that specifically increase REM sleep when the room temperature is "just right".

REM sleep promoting neurons

The researchers discovered that a small population of neurons within the hypothalamus, called melanin-concentrating hormone (MCH) neurons, play a critical role in how we modulate REM sleep expression as a function of ambient (or room) temperature. The researchers showed that mice will dynamically increase REM sleep when the room temperature is warmed to the high end of their comfort zone, similar to what has been shown for human sleep. However, genet-ically engineered mice lacking the receptor for MCH are no longer able to increase REM sleep during warming, as if they are blind to the warming temperature. The authors used optogenet-ics technics to specifically turn on or off MCH neurons using a laser light time locked to the temperature warming periods. Their work confirms the necessity of the MCH system to increase REM sleep when the need for body temperature control is minimized.

Breakthrough for sleep medicine

This is the first time that an area of the brain has been found to control REM sleep as a func-tion of room temperature. "Our discovery of these neurons has major implications for the con-trol of REM sleep", says Schmidt. "It shows that the amount and timing of REM sleep are finely tuned with our immediate environment when we do not need to thermoregulate. It also con-firms how dream sleep and the loss of thermoregulation are tightly integrated".

REM sleep is known to play an important role in many brain functions such as memory consoli-dation. REM sleep comprises approximately one quarter of our total sleep time. "These new data suggest that the function of REM sleep is to activate important brain functions specifically at times when we do not need to expend energy on thermoregulation, thus optimizing use of energy resources", says Schmidt.
-end-


University of Bern

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.