Nav: Home

Expanding the temperature range of lithium-ion batteries

June 19, 2019

Electric cars struggle with extreme temperatures, mainly because of impacts on the electrolyte solutions in their lithium-ion batteries. Now, researchers have developed new electrolytes containing multiple additives that work better over a wide temperature range. They report their results in ACS Applied Materials & Interfaces.

Lithium-ion batteries are widely used in cell phones, laptop computers and electric vehicles. The electrolyte solutions in these batteries conduct ions between the negative electrode (anode) and positive electrode (cathode) to power the battery. An indispensable component of most of these solutions, ethylene carbonate helps create a protective layer, preventing further decomposition of electrolyte components when they interact with the anode. However, ethylene carbonate has a high melting point, which limits its performance at low temperatures. Wu Xu and colleagues showed previously that they could extend the temperature range of lithium-ion batteries by partially replacing ethylene carbonate with propylene carbonate and adding cesium hexafluorophosphate. But they wanted to improve the temperature range even further, so that lithium-ion batteries could perform well from -40 to 140 F.

The researchers tested the effects of five electrolyte additives on the performance of lithium-ion batteries within this temperature range. They identified an optimized combination of three compounds that they added to their previous electrolyte solution. This new combination caused the formation of highly conductive, uniform and robust protective layers on both the anode and the cathode. Batteries containing the optimized electrolyte had greatly enhanced discharging performance at -40 F and long-term cycling stability at 77 F, along with slightly improved cycling stability at 140 F.
-end-
The authors acknowledge funding from the U.S. Department of Energy.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Batteries Articles:

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.
Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.
New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).
New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.
Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.
Will the future's super batteries be made of seawater?
The race is on to develop even more efficient and rechargable batteries for the future.
Less may be more in next-gen batteries
Rice University engineers build full lithium-ion batteries with silicon anodes and an alumina layer to protect cathodes from degrading.
Not so fast: Some batteries can be pushed too far
Fast charge and discharge of some lithium-ion batteries with intentional defects degrades their performance and endurance, according to Rice University engineers.
Interfacial chemistry improves rechargeability of Zn batteries
Prof. CUI Guanglei's group from the Qingdao Institute of Bioenergy and Bioprocess Technology of the Chinese Academy of Sciences has proposed new concepts concerning in situ formed and artificial SEIs as a means of fundamentally modulating the electrochemical characteristics of Zn.
Detours may make batteries better
Adding atom-scale defects to battery materials may help them charge faster, theoretical models by Rice University scientists show.
More Batteries News and Batteries Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.