Nav: Home

OU physicists show novel Mott state in twisted graphene bilayers at 'magic angle'

June 19, 2019

A University of Oklahoma physics group sheds light on a novel Mott state observed in twisted graphene bilayers at the 'magic angle' in a recent study just published in Physical Review Letters. OU physicists show the Mott state in graphene bilayers favors ferromagnetic alignment of the electron spins, a phenomenon unheard of in conventional Mott insulators, and a new concept on the novel insulating state observed in twisted graphene bilayers.

"We are trying to understand the nature of the Mott state in this system," said Bruno Uchoa, associate professor in the Homer L. Dodge Department of Physics and Astrophysics. "The Mott state we proposed is an insulating state that may lead to superconductivity in some conditions, yet is different from Mott states observed in other systems. There are fundamental differences, however, and this is what we are studying."

Mott physics has been extensively investigated in the last decades in high-temperature cuprate superconductors - materials that in some conditions can transmit charge currents at relatively high temperature without producing any heat dissipation. In the Mott phase, however, the motion of charge carriers is confined by their strong mutual electric repulsion, which leads to insulating behavior, when a material is unable to conduct any electricity.

It also leads to anti-ferromagnetism, a state where the spins of two electrons sitting next to each other are anti-parallel. The latter property is the result of the Pauli exclusion principle, one of the many exotic properties of quantum mechanics, which states that the two electrons cannot occupy the same quantum state. The new study shows that the Mott state in graphene departs from other known examples in fundamental ways.

Using two sheets of graphene twisted at a very small angle, known as the 'magic angle,' the system correlates with properties seen in high-temperature superconductors. Graphene is made of carbon and the thinnest material in the universe, only one atom thick. The material is like a honeycomb lattice, so two layers twisted at a very small angle result in the electrons moving differently. The new work shows that lattice constraints imposed by the small twist angle can strongly favor parallel alignment of the electronic spins even when electrons are strongly repelling each other. The OU physicists proposed a novel Mott state where these electrons behave in ways not seen before.

"Twisted graphene bilayers are very promising for a variety of technological applications in nanodevices," said Kangjun Seo, a postdoctoral researcher in the OU group, who was first author on the study. "This is a very interesting and important physical system."
The OU paper, "Ferromagnetic Mott State in Twisted Graphene Bilayers at the Magic Angle," recently was published in Physical Review Letters. A National Science Foundation grant funded the OU research. For more information about this study, contact Uchoa at

University of Oklahoma

Related Graphene Articles:

Graphene is 3D as well as 2D
Graphene is actually a 3D material as well as a 2D material, according to a new study from Queen Mary University of London.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
How to purify water with graphene
Scientists from the National University of Science and Technology 'MISIS' together with their colleagues from Derzhavin Tambov State University and Saratov Chernyshevsky State University have figured out that graphene is capable of purifying water, making it drinkable, without further chlorination.
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results.
1 + 1 does not equal 2 for graphene-like 2D materials
Physicists from the University of Sheffield have discovered that when two atomically thin graphene-like materials are placed on top of each other their properties change, and a material with novel hybrid properties emerges, paving the way for design of new materials and nano-devices.
More Graphene News and Graphene Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...