Marine microbiology -- Successful extremists

June 19, 2019

In nutrient-poor deep-sea sediments, microbes belonging to the Archaea have outcompeted bacterial microorganisms for millions of years. Their ability to efficiently scavenge dead cells makes them the basal producers in the food chain.

Archaea constitute a group of unicellular microorganisms that are primarily known as highly versatile denizens of extremely demanding habitats. Viewed with the light microscope, they look very much like bacteria, but the two groups differ markedly from each other in many respects. In particular, there are important differences between them with respect to their metabolic capabilities, and these largely determine which ecological niches they can exploit. Researchers led by Professor William Orsi of the Department of Earth and Environmental Sciences at Ludwig-Maximilians-Universitaet (LMU) in Munich, in cooperation with American colleagues belonging to the Deep Life Community [which is part of the Deep Carbon Observatory (DCO)] have now discovered that species of Archaea have not only managed to survive for many millions of years in sediments far below the floor of the open ocean, but that they cope with the difficult living conditions in the subseafloor biosphere far better than bacteria do. The new findings suggest that these adaptable Archaea are likely to play an important role in the geochemical carbon and nitrogen cycles in this enormous ecosystem. The study appears in the online journal Science Advances.

Sediments deposited in the oceans near continental margins often exhibit low levels of oxygen, because large amounts of organic carbon are constantly being exported to the seafloor. The organic carbon is rapidly metabolized by microorganisms, and this process consumes all the available oxygen. In the open ocean, however, the main source of organic nutrients in the seafloor is made up of dead organisms that inexorably sink to the seafloor. This in turn means that far less organic carbon is available for metabolism, and consequently the oxygen in the sediments below the seafloor is preserved. "Modelling studies suggest that between 10 and 40% of these sediments, from the seafloor down into the underlying crust, are supplied with oxygen," says Orsi. "This is a huge region, whose biosphere is as yet largely unexplored."

In order to learn more about this habitat, which is difficult to access, the authors of the new study used a 30-m long drill core to obtain samples of the sub-seafloor sediments from a depth of about 5500 m at a site in the Sargasso Sea in the North Atlantic. By analyzing the DNA fragments extracted from these sedimentary deposits - which are up to 15 million years old - they were able to identify the major classes of micro-organisms present in the strata. "And we made the astonishing discovery that members of the Archaea, and in particular the ammonia-oxidizing Thaumarchaea, were far more abundant in these samples than bacteria," says Orsi.

Further analyses showed that this specific group of Archaea possesses a highly efficient metabolic system, which enables them to survive in sub-seafloor sediments. In this low-energy environment they utilize protein fragments from dead cells for the construction of the metabolic and structural components they need. In addition, they make use of the ammonia produced by the degradation of proteins as the basis for another chemical reaction cycle, which provides them with energy. "We believe that this unique ability, in combination with an efficient system for the uptake and fixation of carbon, accounts for the dominance of the Thaumarchaea in these sediments," says Steven D'Hondt (University of Rhode Island, USA), the leader of the deep sea expedition.

Overall, the new results suggest that, in oxygen-bearing deep-sea sediments, Thaumarchaea convert inorganic carbon into biomass, and therefore serve as the basal level of the food chain.  This activity has lasted over long timescales, for at least 15 million years. "In this ecosystem, they have been outperforming bacteria for many millions of years," says Orsi, "and this may also hold in other ecological niches below the seafloor"

Ludwig-Maximilians-Universität München

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to