Nav: Home

Researchers learn dangerous brain parasite 'orders in' for dinner

June 19, 2019

Researchers at Indiana University School of Medicine have discovered how a dangerous parasite maintains a steady supply of nutrients while replicating inside of its host cell: it calls for delivery.

Toxoplasma gondii is a single-celled parasite capable of infecting any animal, including humans. Up to one-third of infections in people happen through contact with cat waste or contaminated food or water. Although the parasite only causes acute disease in immune compromised persons, the infection is permanent and has been associated with neurological diseases such as schizophrenia and rage disorder.

The parasite can invade virtually all types of cells in the body. Once inside, it begins to divide exponentially, a process that requires a great deal of resources. The parasite extracts most of the nutrients it needs for replication from its host cell, including essential amino acids like arginine. Because arginine is quickly depleted from the host cell, researchers wanted to learn where the parasite gets more of the amino acid to fuel its expansion into the hundreds.

In a collaborative study funded by the National Institutes of Health, microbiology and immunology professor Bill Sullivan, PhD and biochemistry and molecular biology professor Ronald Wek, PhD identified a cellular starvation stress response that occurs within two hours after Toxoplasma infection. The study was led by Leo Augusto, a postdoctoral fellow in the Sullivan and Wek laboratories, who used a variety of mutant host cells to discern that a protein called GCN2 becomes activated as parasites consume the host cell's arginine supply. Augusto mapped out the cascade of events following GCN2 activation, leading him to discover that host cells infected with Toxoplasma express more of an arginine transporter called CAT1 at their cell surface. CAT1 brings more arginine into the infected cell so Toxoplasma can continue to binge.

These findings suggest infected host cells can sense their nutrients being depleted. Oblivious to the parasites growing inside them, the host cells unwittingly gear up to bring in more arginine to compensate for the loss. The identification of proteins like GCN2 that are important for parasite growth and replication may serve as promising new drug targets to treat intracellular pathogens.

"Pathogens that live and grow inside of cells face special challenges," Sullivan said. "Intracellular pathogens have to replicate without raising alarms, but in order to grow they need to pilfer nutrients from the host. Our study shows that Toxoplasma gets additional nutrients simply by hijacking a starvation response already built into the host cell."

Whether the parasite does this on purpose or if it is a happy accident is still a lingering question. Augusto's work appears to suggest the latter, as parasites deficient in arginine uptake did not elicit a strong starvation response in host cells.
-end-
The study was recently published in the journal PLOS Pathogens.

Bill Sullivan, PhD is a Showalter Professor of Pharmacology and Toxicology at IU School of Medicine. Ronald Wek, PhD is a Showalter Professor of Biochemistry and Molecular Biology at IU School of Medicine. Leonardo Augusto is a postdoctoral fellow in the Dr. Sullivan and Dr. Wek laboratories.

Indiana University

Related Microbiology Articles:

79 Fellows elected to the American Academy of Microbiology
In January of 2015, the American Academy of Microbiology elected 79 new Fellows.
New discovery in the microbiology of serious human disease
Previously undiscovered secrets of how human cells interact with a bacterium which causes a serious human disease have been revealed in new research by microbiologists at The University of Nottingham.
4 cells turn seabed microbiology upside down
With DNA from just four cells, researchers reveal how some of the world's most abundant organisms play a key role in carbon cycling in the seabed.
87 scientists elected to the American Academy of Microbiology
Eighty-seven microbiologists have been elected to Fellowship in the American Academy of Microbiology.
Tips from the journals of the American Society for Microbiology
This release includes information about these articles: Specific Bacterial Species May Initiate, Maintain Crohn's; Bacteria Involved in Sewer Pipe Corrosion Identified; Antibodies to Immune Cells Protect Eyes In Pseudomonas Infection; Dangerous Form of MRSA, Endemic In Many US Hospitals, Increasing in UK.
More Microbiology News and Microbiology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.